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ALMOST SURE LIMIT OF THE SMALLEST
EIGENVALUE OF THE SAMPLE CORRELATION
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Let X(n) = (Xij) be a p × n data matrix, where the n columns
form a random sample of size n from a certain p-dimensional distri-
bution. Let R(n) = (ρij) be the p × p sample correlation coefficient
matrix of X(n); and S(n) = (1/n)X(n)

(
X(n)

)∗ − X̄X̄∗ be the sam-

ple covariance matrix of X(n), where X̄ is the mean vector of the
n observations. Assuming that Xij ’s are independent and identically
distributed with finite fourth moment, we show that the smallest
eigenvalue of R(n) converges almost surely to the limit (1−√c )2 as
n →∞ and p/n → c ∈ (0 , ∞). We accomplish this by showing that
the smallest eigenvalue of S(n) converges almost surely to (1−√c )2.

1. Introduction. Suppose X(n) = (Xij) is a p× n data matrix, where
the n columns form a random sample of size n from a certain p-dimensional
distribution. Let R(n) = (ρij) be the p × p sample correlation coefficient
matrix of X(n), where ρij is the usual Pearson correlation coefficient between
the i-th row and the j-th row of X(n). We are interested in the strong limits
of the extreme eigenvalues of this matrix as its dimensions tend to infinity.

There are two random matrices which are closely related with the sample
correlation matrix. One is the sample covariance matrix S(n) defined by

S(n) = (S(n)
ij ) =

1
n

X(n)
(
X(n)

)∗ − X̄X̄∗,

where X̄ is the mean vector of the n observations. Let

D(n) = diag

{√
S

(n)
11 ,

√
S

(n)
22 , . . . ,

√
S

(n)
pp

}
,

then R(n) could be expressed as

(1.1) R(n) =
(
D(n)

)−1
S(n)

(
D(n)

)−1
.
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The other one is a simplified version of the sample covariance matrix given
by

S(n) = (1/n)X(n)
(
X(n)

)∗
.

Remarks. (1) For notational economy, we will omit the super-index (n)
from now on when there is no confusion. (2) In the literature, S is often
referred under the name “sample covariance matrix”. However, in this paper,
we rename it by simplified sample covariance matrix to avoid confusion.

Suppose λ1(S), λ2(S), . . . , λp(S) are the p eigenvalues of S in increasing
order. While the definition of the largest eigenvalue is clear, one needs to
examine that of the smallest one.

Since rank(S) ≤ n when p ≥ n, the (p − n) smallest eigenvalues are all
zero. Hence we define the smallest eigenvalue of the matrix S as

(1.2) λmin(S) =

{
λ1(S), if p < n;
λp−n+1(S), if p ≥ n.

It is not hard to see that if the empirical spectral distribution F S of S almost
surely converges to the Marčenko-Pastur law Fc with the density

F ′
c(x) =

{
1

2πcx

√
(b− x)(x− a), if a ≤ x ≤ b;

0, otherwise;
(1.3)

and a point mass 1 − 1/c at the origin if c > 1, where a = (1 − √c )2 and
b = (1 +

√
c )2, then

lim inf λmax(S) ≥ b = (1 +
√

c )2 a.s.

lim sup λmin(S) ≤ a = (1−√c )2 a.s.

However, the following converse assertions

lim sup λmax(S) ≤ b = (1 +
√

c )2 a.s.(1.4)

lim inf λmin(S) ≥ a = (1−√c )2 a.s.(1.5)

are not trivial.
Yin, Bai and Krishnaiah (1988) established (1.4). The following modified

version is an immediate consequence of their original result.

Theorem 1.1. Let X be the up-left p×n corner of a double array {Xuv :
u, v = 1, 2, . . .} of independent and identically distributed (i.i.d.) complex
random variables (r.v.s) with zero mean and unit variance. If E|X11|4 < ∞,
then as n →∞ and p/n → c ∈ (0 , ∞),

lim λmax(S) = b = (1 +
√

c )2 a.s.
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It is much more difficult to establish (1.5) than (1.4). Bai and Yin (1993)
devised a unified approach to prove (1.4) and (1.5) at the same time. As an
immediate consequence of their result, we have the following theorem.

Theorem 1.2. Under the same conditions of Theorem 1.1,

lim λmin(S) = a = (1−√c )2 a.s.

More than ten years later, Jiang (2004) proved that the largest eigen-
value of the sample correlation matrix R converges to the limit (1 +

√
c )2

with probability one as n → ∞ and p/n → c ∈ (0 , ∞). Jiang (2004) also
conjectured that the smallest eigenvalue of R converges to (1−√c )2 a.s..

Since rank(R) ≤ n− 1, as in (1.2), the smallest eigenvalue of the matrix
R can be defined as

(1.6) λmin(R) =

{
λ1(R), if p < n;
λp−n+2(R), if p ≥ n.

In this paper, we prove Jiang’s conjecture.

Theorem 1.3. Let X be the up-left p×n corner of a double array {Xuv :
u, v = 1, 2, . . .} of i.i.d. complex r.v.s with unit variance. If E|X11|4 < ∞,
then as n →∞ and p/n → c ∈ (0 , ∞),

lim λmin(R) = a = (1−√c )2 a.s.

We accomplish the proof of Theorem 1.3 by establishing the following result
on the sample covariance matrix S. Note that the definition of the smallest
eigenvalue of S is given by replacing R in (1.6) by S.

Theorem 1.4. Under the same conditions of Theorem 1.3,

lim λmin(S) = a = (1−√c )2 a.s.

The paper is organized as follows. In section 2, we show how Theorem 1.4
implies Theorem 1.3. The proof of Theorem 1.4 will be completed in Section
3. The auxiliary lemmas are collected in the last section.

2. From Sample Covariance Matrix to Sample Correlation Ma-
trix. Our task is this section is to prove Theorem 1.3 by Theorem 1.4.
Actually the argument here parallels that in Jiang (2004). We repeat it for
the completeness of the whole proof.



4 H. XIAO AND W. ZHOU

Since we are interested in sample covariance matrix and sample corre-
lation matrix, we can assume that EX11 = 0. According Theorem 1.4, it
suffices to show that

(2.1)
√

λmin(R)−
√

λmin(S) → 0 a.s.

Note that the sample covariance matrix S could be written as S = (1/n)XPX,
where P is the n × n projection matrix defined as I − 1

n11
T , and 1 is the

n × 1 vector whose entries are all 1’s. Since R = D−1SD−1 (see (1.1)), by
Lemma 4.1

∣∣∣∣
√

λmin(R)−
√

λmin(S)
∣∣∣∣ ≤ ‖D−1 1√

n
XP − 1√

n
XP‖

≤ ‖D−1 − I‖ · ‖ 1√
n

X‖,(2.2)

Since E|X11|4 < ∞, due to Lemma 4.4, we know that

(2.3) max
1≤j≤p

∣∣∣∣∣

∑n
i=1 X2

ij

n
− 1

∣∣∣∣∣ → 0 a.s.,

and

(2.4) max
1≤j≤p

X̄j → 0 a.s.

where X̄j is the j-th entry of the mean vector X̄. Combine (2.3) and (2.4),
we have

max
1≤j≤p

∣∣∣∣∣

∑n
i=1(Xij − X̄j)2

n
− 1

∣∣∣∣∣ ≤ max
1≤j≤p

∣∣∣∣∣

∑n
i=1 X2

ij

n
− 1

∣∣∣∣∣ + max
1≤j≤p

X̄2
j → 0 a.s.,

and this implies that

(2.5) ‖D−1 − I‖ = max
1≤j≤p

∣∣∣∣∣∣

√
n√∑n

i=1(Xij − X̄j)2
− 1

∣∣∣∣∣∣
→ 0 a.s.

By Theorem 1.1,

‖ 1√
n

X‖ =
√

λmax(S) → 1 +
√

c a.s.

This together with (2.2) and (2.5) proves (2.1).
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3. Proof of Theorem 1.4. We first derive the limiting spectral distri-
bution of S. Since S = S− X̄X̄∗, by Lemma 4.2, we know that

‖FS − F S‖ ≤ 1
p

rank(X̄X̄∗) =
1
p
.

Since convergence in the sup norm implies the weak convergence of the
distribution functions, we know FS also converges to the Marčenko-Pastur
law, and hence

lim sup λmin(S) ≤ a = (1−√c )2 a.s.

Therefore, in order to prove Theorem 1.4, it suffices to show that

(3.1) lim inf λmin(S) ≥ a = (1−√c)2 a.s.

Note that when c = 1, the situation is trivial. When c > 1, p is larger than
n when n is very large. In this case we will consider λmin(S) = λp−n+2(S),
which is the (p− n + 2)-th smallest eigenvalue of S. According to Corollary
4.3.3 of Horn and Johnson (1985), we have

λp−n+2(Σ) ≥ λp−n+1(S).

As an immediate consequence of this fact and Theorem 1.2, we know that
(3.1) holds when c > 1. Now we shall prove (3.1) when 0 < c < 1, and the
long proof will be divided into several steps.

3.1. Truncation. For C > 0, let Yij = XijI{|Xij |≤C} − EXijI{|Xij |≤C},
Y = (Yij) and S̃ = (1/n)Y PY ∗. Denote the eigenvalues of S and S̃ by λk

and λ̃k (in increasing order). Since these are the squares of the k-th smallest
singular values of (1

√
n)XP and (1

√
n)Y P (respectively); it follows from

Lemma 4.1 that
max
k≤n

|λ1/2
k − λ̃

1/2
k | ≤ 1√

n
‖X − Y ‖

Since Xij−Yij = XijI{|Xij |>C}−EXijI{|Xij |>C}, from Theorem 1.1, we have,
with probability one,

lim sup
n→∞

max
k≤n

|λ1/2
k − λ̃

1/2
k | ≤ (1 +

√
c)E1/2|X11|2I{|Xij |>C}

Since E|X11|2 = 1, we can make the above bound arbitrarily small by choos-
ing C sufficiently large. Thus, in the following investigation, we can assume
that the underlying variables are uniformly bounded. It is easy to verify
that we can rescale the variables such that the assumption E|X11|2 = 1 still
holds.
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3.2. An Equivalent Problem. Suppose that the smallest eigenvalue of S
is smaller than a = (1 − √c)2, than there exists a non-zero vector β, such
that:

Sβ =
(
S− X̄X̄∗) β = λmin(S)β.

which is equivalent to

(3.2) (S− λmin(S)I) β = X̄X̄∗β

If the smallest eigenvalue of S is not smaller than a, then we have that
X̄∗β 6= 0 and the matrix (S − λmin(S)I) is nonsingular. In this case (3.2)
can be inverted to give

β = (S− λmin(S)I)−1 X̄X̄∗β.

If we multiply both sides of the above equation by X̄∗, we will get

X̄∗β = X̄∗ (S− λmin(S)I)−1 X̄X̄∗β.

Since X̄∗β 6= 0, we can obtain that

(3.3) X̄∗ (S− λmin(S)I)−1 X̄ = 1.

The above arguments (especially (3.3)) provide the basic idea that we
will make use of to state the current problem in an equivalent form which
is given by the following lemma.

Lemma 3.1. If P (lim inf λmin(S) < a) > 0, then for some 0 < λ < a,

P
(
lim sup X̄∗ (S− λI)−1 X̄ ≥ 1

)
> 0.

In other words, if

(3.4) lim sup X̄∗ (S− λI)−1 X̄ < 1 a.s. ∀ 0 < λ < a

then we will have the desirable property

lim inf λmin(S) ≥ a a.s.

Proof: If P (lim inf λmin(S) < a) > 0, then there exists a small ε > 0, such
that P (lim inf λmin(S) < a− 3ε) > 0. For simplicity, we will denote the
event {lim inf λmin(S) < a− 3ε} by E0. Let Bn denote the event {λmin(S) ≤
a− ε}, from Lemma 4.5, we know that P (Bn) = o(n−l) for any l > 0. Hence
it is easy to see that for some N large enough, P (E0 \ ∪∞n=NBn) > 0. We
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use E to denote the event E0 \ ∪∞n=NBn. For each ω ∈ E, the following two
properties hold:

lim inf λmin(S(ω)) < a− 3ε, λmin(S(ω)) > a− ε,∀ n ≥ N.

Since lim inf λmin(S(ω)) < a− 3ε, we can find a subsequence nk, such that

lim inf λ
(nk)
min (S(ω)) → λ(ω) < a− 3ε.

When k is large enough, λ
(nk)
min (S(ω)) < a−2ε, and hence we have from (3.3)

sup
0<λ<a−2ε

{[
X̄∗

(
S(nk) − λI

)−1
X̄

]∣∣∣∣
ω

}
≥ 1.

Note that X̄∗ (S− λI)−1 X̄ is an increasing function of λ, we have
[
X̄∗

(
S(nk) − (a− 2ε)I

)−1
X̄

]∣∣∣∣
ω
≥ 1,

and this means that

lim sup
[
X̄∗

(
S(n) − (a− 2ε)I

)−1
X̄

]∣∣∣∣
ω
≥ 1.

Therefore, we know that for λ = a− 2ε,

P
(
lim sup X̄∗ (S− λI)−1 X̄ ≥ 1

)
≥ P (E) > 0,

which completes the proof. ¥
Now our target is to prove (3.4) when 0 < c < 1. Suppose 0 < λ < a, let

2ε = a− λ. We expand X̄∗ (S− λI)−1 X̄ as

X̄∗ (S− λI)−1 X̄ =
1
n

(X1 + · · ·+ Xn)∗ (S− λI)−1 1
n

(X1 + · · ·+ Xn)

=
1
n2

n∑

i=1

X∗
i (S− λI)−1 Xi +

1
n2

∑

i6=j

X∗
i (S− λI)−1 Xj

Let

T1 =
1
n2

n∑

i=1

X∗
i (S− λI)−1 Xi(3.5)

T2 =
1
n2

∑

i6=j

X∗
i (S− λI)−1 Xj ,(3.6)

we will consider T1 and T2 respectively.
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3.3. Non-negative Terms. Let Si = S − (1/n)XiX
∗
i . Using Lemma 4.3,

we may write T1 as

T1 =
1
n2

n∑

i=1

X∗
i (Si − λI)−1 Xi

1 + 1
nX∗

i (Si − λI)−1 Xi

=
1
n

n∑

i=1

1
nX∗

i (Si − λI)−1 Xi

1 + 1
nX∗

i (Si − λI)−1 Xi

.

We use Ei to denote the event {λmin(Si) > a− ε}, and let E =
⋂n

i=1 Ei.
Again from Lemma 4.5, we know that P (Ec

i ) = o(n−l) for any l > 0, and
hence P (Ec) = o(n−l) for any l > 0. On the event E,

∥∥∥(Si − λI)−1
∥∥∥ ≤ 1/ε,

and the matrix (Si − λI)−1 is non-negative definite. Since all the entries of
X are bounded by a constant C, we have

∣∣∣∣
1
n

X∗
i (Si − λI)−1 Xi

∣∣∣∣ ≤
1
n
‖X∗

i ‖
∥∥∥(Si − λI)−1

∥∥∥ ‖Xi‖ ≤ C

ε
.

Therefore we know on the event E,

T1 ≤
C
ε

1 + C
ε

< 1.

Since P (Ec) = o(n−l) for any l > 0, by Borel-Cantelli Lemma we know that

(3.7) lim supT1 ≤
C
ε

1 + C
ε

< 1 a.s.

3.4. Crossed Terms. Now we will focus on T2, and it suffices to show
that:

(3.8) limT2 = 0 a.s.

Let Sij = S− (1/n)XiX
∗
i − (1/n)XjX

∗
j . By Lemma 4.3, we can write T2 as

T2 =
1
n2

∑

i6=j

X∗
i (Sij − λI)−1 Xj[

1 + 1
nX∗

i (Si − λI)−1 Xi

] [
1 + 1

nX∗
j (Sij − λI)−1 Xj

] .

This expression plays the central role in our investigation.
In the previous parts, we have defined the matrix Si and Sij . Similarly,

we can define such kind of matrix with more sub-indices, such as Si1i2j1 ,
Si1i2j1j2 , etc. In general, let Λ ⊂ N be an finite index set, SΛ is defined as

SΛ = S− 1
n

∑

i∈Λ

XiX
∗
i .
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For simplicity we use the notation AΛ to denote the following matrix

AΛ = (SΛ − λI)−1 .

3.4.1. Change Si to Sij in the Denominator. Motivated by the symme-
try, we first change Si in the denominator of T2 to Sij , and denote the new
term by T3

T3 =
1
n2

∑

i6=j

X∗
i (Sij − λI)−1 Xj[

1 + 1
nX∗

i (Sij − λI)−1 Xi

] [
1 + 1

nX∗
j (Sij − λI)−1 Xj

]

=
1
n2

∑

i6=j

X∗
i AijXj(

1 + 1
nX∗

i AijXi

) (
1 + 1

nX∗
j AijXj

) .

Our task in this step is to show that

(3.9) D23 = T2 − T3 → 0 a.s.

According to Lemma 4.3, we can write D23 as

D23 =
1
n2

∑

i6=j

X∗
i AijXj

(
1
nX∗

i AijXi − 1
nX∗

i AiXi

)
(
1 + 1

nX∗
i AiXi

) (
1 + 1

nX∗
i AijXi

) (
1 + 1

nX∗
j AijXj

)

=
1
n4

∑

i6=j

X∗
i AijXjX

∗
i AijXjX

∗
j AijXi(

1 + 1
nX∗

i AiXi

) (
1 + 1

nX∗
i AijXi

) (
1 + 1

nX∗
j AijXj

)2

In order to control the norm of the matrix Aij , we will confine it on the
event Eij = {λmin(Sij) > a− ε}; and we consider

D̄23 =
1
n4

∑

i6=j

X∗
i AijXjX

∗
i AijXjX

∗
j AijXi(

1 + 1
nX∗

i AiXi

) (
1 + 1

nX∗
i AijXi

) (
1 + 1

nX∗
j AijXj

)2 Iij .

By Borel-Cantelli Lemma and Lemma 4.5, it is not difficult to see that the
difference between D23 and D̄23 tends to zero with probability one. Hence
it suffices to consider D̄23 in the following. On the event Eij , Ai and Aij are
positive definite, and hence

(
1 +

1
n

X∗
i AiXi

) (
1 +

1
n

X∗
i AijXi

) (
1 +

1
n

X∗
j AijXj

)2

≥ 1;
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so in order to prove (3.9), it is enough to show that

(3.10) D′
23 =

1
n4

∑

i6=j

|X∗
i AijXjX

∗
i AijXjX

∗
j AijXi| → 0 a.s.

Since on the event Eij , the norm of Aij is bounded by 1/ε; due to Lemma
4.6, we know that

E|X∗
i AijIijXj |r = E [E ( |X∗

i AijIijXj |r|Aij)]

≤ Krn
r/2 for any r ≥ 2;

and similarly

E|X∗
j AijIijXi|r ≤ Krn

r/2 for any r ≥ 2;

where Kr is a constant only depending on r. Making use of these orders,
together with Hölder inequality, we can compute the third moment of D′

23,
and the result is given by

E|D′
23|3 = O(n−3/2);

Therefore, (3.10) follows the Borel-Cantelli lemma.
Remark. Note that when we transfer form D23 to D̄23, what we do is

to confine the matrix Aij on the event Eij = {λmin(Sij) > a− ε} so that
its normal could be controlled by 1/ε. We should further note that AijIij

is still independent with Xi and Xj . In general, we could confine the ma-
trix AΛ on the event EΛ = {λmin(SΛ) > a− ε} to control its norm. In the
subsequent investigation, we should use this kind of confinement again and
again. Fortunately, due to Lemma 4.5 and Borel-Cantelli Lemma, none of
these confinements will change the strong limit under condiseration; and a
straightforward but tedious argument could furnish the justification if nec-
essary. To circumvent such tedium, we can conveniently assume that:

Assumption (i). AΛ is non-negative definite and ‖AΛ‖ ≤ (1/ε) for
any finite index set Λ;
Assumption (ii). AΛ and {Xi, i ∈ Λ} are independent.

3.4.2. Remove Xi and Xj in the Denominator. We first show that in the
denominator X∗

i AijXi can be replaced by trAij . Let

T4 =
1
n2

∑

i6=j

X∗
i AijXj(

1 + 1
n trAij

) (
1 + 1

nX∗
j AijXj

) ,
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our task is to show that:

D43 = T4 − T3 → 0 a.s.

We write D43 as

D43 =
1
n2

∑

i6=j

X∗
i AijXj

(
1
nX∗

i AijXi − 1
n trAij

)
(
1 + 1

n trAij

) (
1 + 1

nX∗
i AijXi

) (
1 + 1

nX∗
j AijXj

) .

It is convenient to consider the following

D̄43 =
1
n2

∑

i6=j

X∗
i AijXj

(
1
nX∗

i AijXi − 1
n trAij

)
(
1 + 1

n trAij

) (
1 + 1

n trAij

) (
1 + 1

nX∗
j AijXj

) .

instead of D43. The reason is that by computation (again due to Lemma 4.6
and Hölder inequality), we can find that:

E|D43 − D̄43|3 = O(n−3/2)

and hence D43 − D̄43 → 0 almost surely. For the similar reason, we can
consider simply

D̃43 =
1
n2

∑

i6=j

X∗
i AijXj

(
1
nX∗

i AijXi − 1
n trAij

)

(
1 + 1

n trAij

)3 .

For simplicity we use S(i, j) to denote

S(i, j) =
X∗

i AijXj

(
1
nX∗

i AijXi − 1
n trAij

)

(
1 + 1

n trAij

)3 .

Now we will compute the fourth absolute moment of D̃43, and we first expand
E|D̃43|4 as

E|D̃43|4 =
1
n8

∑

i1 6=j1
i2 6=j2
i3 6=j3
i4 6=j4

E
[
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)

]
,

where S̄(i, j) is the complex conjugate of S(i, j). Totally we need to use
eight sub-indices here, although some of them may have the same value.
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According to Assumption (i), Hölder inequality and Lemma 4.6, we know
that

E|S(i, j)|r ≤
(
E(X∗

i AijXj)2r
)1/2

(
E

(
1
n

X∗
i AijXi − 1

n
trAij

)2r
)1/2

(3.11)

≤ Krn
r/2n−r/2 = O(1) for any r ≥ 2.

Now it is easy to verify that the contribution of those terms with less than
or equal to six different sub-indices in E|D̃43|4 is of the order O(n−2), which
is summable. Therefore, in order to show that

(3.12) D̃43 → 0 a.s.,

we only need to consider the following two cases.

Case 1: seven different indices

When there are seven different indices, the summand has finite different
forms depending on which two indices are the same. We only deal with the
following kind of summands here,

(3.13) E
[
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i3, j4)

]

The other forms of summand can be treated similarly.
Now for convenience we define an useful operator ∆i. Let f(AΛ) be a

function which involves the matrix AΛ, and assume i /∈ Λ. ∆i is defined as

∆i(f(AΛ)) = f(AΛ)− f(AΛ∪{i}).

For the term in (3.13), in the ideal situation, if Xj1 is independent with
other parts, then the conditional expectation of Xj1 given all the other obser-
vations is zero, which means the expectation in (3.13) is zero. Unfortunately,
this is not the case, because Xj1 is involved in matrices Ai2j2 , Ai3j3 and Ai3j4 .
However, motivated by this idea, we can consider the following term

E

(X∗
i1

Ai1j1Xj1

(
1
nX∗

i1
Ai1j1Xi1 − 1

n trAi1j1

)

(
1 + 1

n trAi1j1

)3(3.14)
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×
X∗

j2
Ai2j1j2Xi2

(
1
nX∗

i2
Ai2j1j2Xi2 − 1

n trAi2j1j2

)

(
1 + 1

n trAi2j1j2

)3

×
X∗

i3
Ai3j1j3Xj3

(
1
nX∗

i3
Ai3j1j3Xi3 − 1

n trAi3j1j3

)

(
1 + 1

n trAi3j1j3

)3

×
X∗

j4
Ai3j1j4Xi3

(
1
nX∗

i3
Ai3j1j4Xi3 − 1

n trAi3j1j4

)

(
1 + 1

n trAi3j1j4

)3

)
.

For simplicity we introduce the notation Sk(i, j)

Sk(i, j) =
X∗

i AijkXj

(
1
nX∗

i AijkXi − 1
n trAijk

)

(
1 + 1

n trAijk

)3 ,

and (3.14) can be written as

E
[
S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i3, j4)

]

Note that now all the matrices involved in (3.14) are independent of Xj1 , so
the expectation in (3.14) is zero, and hence subtracting (3.14) from (3.13)
will not change the expectation in (3.13). This leads us to consider

S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i3, j4)− S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i3, j4)
(3.15)

=S(i1, j1)
[
∆j1S̄(i2, j2)

]
S(i3, j3)S̄(i3, j4)

+S(i1, j1)S̄j1(i2, j2) [∆j1S(i3, j3)] S̄(i3, j4)
+S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)

[
∆j1S̄(i3, j4)

]
.

The explicit formula of [∆j1S(i2, j2)] is given by

∆j1S(i2, j2) = S(i2, j2)− Sj1(i2, j2)(3.16)

=

[
−∆j1

(
1 + 1

n trAi2j2

)3
]
X∗

i2
Ai2j2Xj2

(
1
nX∗

i2
Ai2j2Xi2 − 1

n trAi2j2

)

(
1 + 1

n trAi2j2

)3 (
1 + 1

n trAi2j1j2

)3

+

[
∆j1

(
X∗

i2
Ai2j2Xj2

)] (
1
nX∗

i2
Ai2j2Xi2 − 1

n trAi2j2

)

(
1 + 1

n trAi2j1j2

)3

+
X∗

i2
Ai2j1j2Xj2

[
∆j1

(
1
nX∗

i2
Ai2j2Xi2 − 1

n trAi2j2

)]

(
1 + 1

n trAi2j1j2

)3 ,
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where

∆j1

(
1 +

1
n

trAi2j2

)3

=
[
∆j1

(
1 +

1
n

trAi2j2

)] (
1 +

1
n

trAi2j2

)2

(3.17)

+
(

1 +
1
n

trAi2j1j2

) [
∆j1

(
1 +

1
n

trAi2j2

)] (
1 +

1
n

trAi2j2

)

+
(

1 +
1
n

trAi2j1j2

)2 [
∆j1

(
1 +

1
n

trAi2j2

)]

∆j1

(
1 +

1
n

trAi2j2

)
=

1
n

1
nX∗

j1
A2

i2j1j2
Xj1

1 + 1
nX∗

j1
Ai2j1j2Xj1

(3.18)

∆j1

(
X∗

i2Ai2j2Xj2

)
=

1
n

X∗
i2

Ai2j1j2Xj1X
∗
j1

Ai2j1j2Xj2

1 + 1
nX∗

j1
Ai2j1j2Xj1

(3.19)

∆j1

(
1
n

X∗
i2Ai2j2Xi2 −

1
n

trAi2j2

)
=

1
n2

X∗
i2

Ai2j1j2Xj1X
∗
j1

Ai2j1j2Xj2

1 + 1
nX∗

j1
Ai2j1j2Xj1

(3.20)

− 1
n

1
nX∗

j1
A2

i2j1j2
Xj1

1 + 1
nX∗

j1
Ai2j1j2Xj1

.

Combining equations (3.16) to (3.20), again by Lemma 4.6 and Hölder in-
equality, we find that

(3.21) E |∆j1S(i2, j2)|r = O(n−r/2) for any r ≥ 2.

We can verify that E |∆j1S(i3, j3)|r and E |∆j1S(i3, j4)|r also have the above
order. Therefore, by (3.11) and (3.15), the order of (3.13) is O(n−1/2). Fur-
thermore, the same order can be verified for all the other terms with seven
different sub-indices. Since the number of the terms with seven different
sub-indices is at most O(n7), we know the contribution of these terms in
E|D̃43|4 is of the order O(n−3/2), which is summable.

Remark. Note that if we compute the order of (3.13) directly by Lemma
4.6 and Hölder inequality, the result will be O(1). By taking the difference
between (3.13) and (3.14), the order is reduced by n1/2. This order reduction
method will be used frequently in the subsequent discussions.

Case 2: eight different indices

Now we consider the terms with eight different indices which have the
form

(3.22) E
[
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)

]
.

In order to simplify the long expressions, we introduce another operator Ψi.
Let f(AΛ1 , AΛ2 , . . . , AΛm) be a function which involves the matrix AΛ1 , AΛ2 ,
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. . . , AΛm , Ψi is defined as

Ψi(f(AΛ1 , AΛ2 , . . . , AΛm)) = f(AΛ′1 , AΛ′2 , . . . , AΛ′m).

where
Λ′k = Λk ∪ {i}, , k = 1, 2, . . . , m.

As an example of this operator, note that ΨkS(i, j) = Sk(i, j).
We compute the order of (3.22) along similar lines in Case 1. However, the

procedure and computation here are more complicated, so we only describe
the main steps and omit the details. We know due to (3.11),

∣∣E [
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)

]∣∣ = O(1).

Our purpose is to reduce this order to O(n−3/2) so that the contribution of

all the terms with eight different indices in E
∣∣∣D̃43

∣∣∣
4

is of the order O(n−3/2),
which is summable.

Motivated by the order reduction method in Case 1, we begin by consid-
ering the following term

E
[
S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i4, j4)

]
.

Since all the matrices involved in S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i4, j4) are
independent of Xj1 , we know that

E
[
S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i4, j4)

]
= 0;

and hence

E[S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)] = E[S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)]
−E[S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i4, j4)].

Thus, it suffices to consider the difference

S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)− S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i4, j4)
=S(i1, j1)

[
∆j1S̄(i2, j2)

]
S(i3, j3)S̄(i4, j4)(3.23)

+S(i1, j1)S̄j1(i2, j2) [∆j1S(i3, j3)] S̄(i4, j4)(3.24)
+S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)

[
∆j1S̄(i4, j4)

]
.(3.25)

Because of (3.21), we know the expectations of (3.23)∼(3.25) are of the order
O(n−1/2), so we need to reduce these orders further. For the term (3.23),
since

ESj2(i1, j1)
[
∆j1S̄(i2, j2)

]
Sj2(i3, j3)S̄j2(i4, j4) = 0,
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it is enough to consider

S(i1, j1)
[
∆j1S̄(i2, j2)

]
S(i3, j3)S̄(i4, j4)

−Sj2(i1, j1)
[
∆j1S̄(i2, j2)

]
Sj2(i3, j3)S̄j2(i4, j4)

= [∆j2S(i1, j1)]
[
∆j1S̄(i2, j2)

]
S(i3, j3)S̄(i4, j4)(3.26)

+Sj2(i1, j1)
[
∆j1S̄(i2, j2)

]
[∆j2S(i3, j3)] S̄(i4, j4)(3.27)

+Sj2(i1, j1)
[
∆j1S̄(i2, j2)

]
Sj2(i3, j3)

[
∆j2S̄(i4, j4)

]
.(3.28)

It is not hard to see that the expectations of (3.26)∼(3.28) are of the order
O(n−1), so we have to use our order reduction method one more time. For
the term (3.26), since

E [Ψj3∆j2S(i1, j1)]
[
Ψj3∆j1S̄(i2, j2)

]
S(i3, j3)S̄j3(i4, j4) = 0,

we will consider

[∆j2S(i1, j1)]
[
∆j1S̄(i2, j2)

]
S(i3, j3)S̄(i4, j4)

− [Ψj3∆j2S(i1, j1)]
[
Ψj3∆j1S̄(i2, j2)

]
S(i3, j3)S̄j3(i4, j4)

= [∆j3∆j2S(i1, j1)]
[
∆j1S̄(i2, j2)

]
S(i3, j3)S̄(i4, j4)(3.29)

+ [Ψj3∆j2S(i1, j1)]
[
∆j3∆j1S̄(i2, j2)

]
S(i3, j3)S̄(i4, j4)(3.30)

+ [Ψj3∆j2S(i1, j1)]
[
Ψj3∆j1S̄(i2, j2)

]
S(i3, j3)

[
∆j3S̄(i4, j4)

]
.(3.31)

In fact, the explicit expression of [∆j3∆j2S(i1, j1)] and [∆j3∆j1S(i2, j2)] can
be obtained, from which, the orders of these two terms can be computed.
However, the computation is very tedious, so we will omit the details; and
only write the results here:

E |∆j3∆j2S(i1, j1)|r = O(n−r)(3.32)
E |∆j3∆j1S(i2, j2)|r = O(n−r)(3.33)

Due to (3.11), (3.21), (3.32) and (3.33), we know that the expectations of
(3.29) ∼ (3.31) are of the order O(n−3/2). All the other terms could be
treated similarly.

With the results from the above two cases, we can complete the proof of
(3.12), which leads us to consider

T4 =
1
n2

∑

i6=j

X∗
i AijXj(

1 + 1
n trAij

) (
1 + 1

nX∗
j AijXj

) .

Similarly, in the denominator of T4, X∗
j AijXj can also be replaced by trAij .

In the following parts, we will focus on

(3.34) T5 =
1
n2

∑

i6=j

X∗
i AijXj(

1 + 1
n trAij

)2 ,
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and our task is to show that

(3.35) T5 → 0 a.s.

3.4.3. Proof of (3.35). Let

T (i, j) =
X∗

i AijXj(
1 + 1

n trAij

)2 ,

then we can simplify the expression of T5

T5 =
1
n2

∑

i6=j

T (i, j).

Since T5 is real, in order to prove (3.35), it is enough to show that

(3.36) T 2
5 → 0 a.s.

We expand T 2
5 as

T 2
5 =

1
n4

∑

i6=j

T (i, j)2+
1
n4

∑

i6=j

T (i, j)T (j, i)+
1
n4

∑

i1 6=j1
i2 6=j2

{i1,j1}6={i2,j2}

T (i1, j1)T (i2, j2)

By simple computation (again due to Lemma 4.6 and Hölder inequality),
we can find that

E

∣∣∣∣∣∣
1
n4

∑

i6=j

T (i, j)2
∣∣∣∣∣∣

2

= O(n−2),

and therefore
1
n4

∑

i6=j

T (i, j)2 → 0 a.s.

Similarly,
1
n4

∑

i6=j

T (i, j)T (j, i) → 0 a.s.

Therefore, in order to prove (3.36), it suffices to show that

(3.37)
1
n4

∑

i1 6=j1
i2 6=j2

{i1,j1}6={i2,j2}

T (i1, j1)T (i2, j2) → 0 a.s.
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In (3.37), we require i1 6= j1, i2 6= j2 and {i1, j1} 6= {i2, j2}, so there may be
three or four different sub-indices.

When there are three different indices, the summand has finite different
forms depending on which two indices are the same. We only consider the
following kind of summand here

(3.38) C3 =
1
n4

∑

i1 6=j1
i1 6=j2
j1 6=j2

T (i1, j1)T (i1, j2),

the summands of other forms could be treated similarly. We will compute
the absolute second moment of C3

(3.39) E|C3|2 =
1
n8

∑
ET (i1, j1)T (i1, j2)T̄ (k1, l1)T̄ (k1, l2)

Along almost the same lines as in Section 3.4.2, we can find that

E|C3|2 = O(n−3/2).

As an immediate consequence of this order and Borel-Cantelli Lemma, we
know

(3.40) C3 → 0 a.s.

For the terms with four different indices

(3.41) C4 =
1
n4

∑

i1 6=j1
i1 6=j2

{i1,j1}∩{i2,j2}=∅

T (i1, j1)T (i2, j2),

the same order reduction method used before can also be applied. Although
the computation will be more complicated and tedious, we can prove that
(details are omitted)

E|C4|2 = O(n−3/2)†,

therefore, by Borel-Cantelli lemma,

(3.42) C4 → 0 a.s.

By (3.40) and (3.42), (3.37) is proved, and hence (3.36) is proved. As a
result, we have (3.35), which is

T5 → 0 a.s.
†In fact, it can be shown that the order is O(n−2). However, O(n−3/2) is small enough
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Now we are in the position to conclude the proof of Theorem 1.4. By the
discussion in Sections 3.4.1 and 3.4.2, we know that (3.35) leads to (3.8),
which is

lim T2 = 0 a.s.

In section 3.3, we show that (see (3.7))

lim sup T1 < 1 a.s.

Combining these two results, we have succeeded in proving (3.4)

lim sup X̄∗ (S− λI)−1 X̄ < 1 a.s. ∀ 0 < λ < a

when 0 < c < 1. As a result of Lemma 3.1, this means that we have estab-
lished (3.1)

lim inf λmin(S) ≥ a = (1−√c)2 a.s.

when 0 < c < 1. The proof of Theorem 1.4 is now completed.

4. Some Lemmas. We first introduce a classical result in linear alge-
bra. In fact it is Corollary 7.3.8 of Horn and Johnson (1985).

Lemma 4.1. Suppose A and B are m × n complex matrices; and let
q = min{m, n}. If σ1 ≥ σ2 ≥ · · ·σq are the singular values of A and
τ1 ≥ τ2 ≥ · · · τq are the singular values of B, then

|σi − τi| ≤ ‖A−B‖, for all i = 1, 2, . . . , q,

where ‖A‖ denotes the spectrum norm of the complex matrix A, which is
defined as the largest singular value of A.

The following rank inequality, which helps us to measure the difference be-
tween two empirical distributions, was proved in Silverstein and Bai (1995).

Lemma 4.2. For n× n Hermitian matrices A and B

‖FA − FB‖ ≤ 1
n

rank(A−B),

where ‖f‖ = supx |f(x)|.

In the subsequent lemma, we list three equalities which are used frequently
in our proof. They could be proved by simple computation.
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Lemma 4.3. Suppose A is an n×n complex matrix and β ∈ Cn. If both
A and (A + ββ∗) are non-singular and 1 + β∗A−1β 6= 0, then:

(A + ββ∗)−1β =
A−1β

1 + β∗A−1β
(4.1)

β∗(A + ββ∗)−1 =
β∗A−1

1 + β∗A−1β
(4.2)

A−1 − (A + ββ∗)−1 =
A−1ββ∗A−1

1 + β∗A−1β
(4.3)

The following lemma, which could be viewed as a generalization of Marcinkiewicz
strong law of large numbers (see Loève (1963), pp. 242-243), was proved in
Bai and Yin (1993).

Lemma 4.4. Let {Xij , i, j = 1, 2, . . .} be a double array of i.i.d. complex
r.v.s. Let α > 1/2, β ≥ 0, and M > 0 be constants. Then, as n →∞,

max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

(Xij − c)

∣∣∣∣∣ → 0 a.s.;

if and only if the following conditions are true:

(i) E|X11|(1+β)/α < ∞;

(ii) c =

{
EX11, if α ≤ 1;
any value in C , if α > 1.

The next result was proved in Bai and Silverstein (2004) (see (1.9b) and
the theorem in the appendix).

Lemma 4.5. Under the conditions of Theorem 1.1, if the underlying vari-
ables are uniformly bounded, then we have when c ∈ (0 , 1)

P (λmin(S) ≤ η) = o(n−l)

for any 0 < η < (1−√c)2 and any positive l.

The first two inequalities in the following lemma were originally proved
in Bai and Silverstein (1998) (Lemma 2.7 and Lemma A.1) by martingale
inequalities. We also state some simple consequences for our purpose.
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Lemma 4.6. Let Y = (Y1, Y2, . . . Yn)T be a random vector containing
i.i.d. standardized complex entries, B be an n×n non-negative definite Her-
mitian matrix, and C be an n× n complex matrix, then

E|Y ∗BY |p ≤ Kp

(
(tr B)p + E|Y1|2ptr Bp

)
for any p ≥ 1

E|Y ∗CY − tr C|p ≤ Kp

(
(E|Y1|4tr CC∗)p/2

+ E|Y1|2ptr (CC∗)p/2
)

for any p ≥ 2

If all the entries of Y are bounded by a constant M1, and the norm of the
non-negative definite Hermitian matrix A is bounded by another constant
M2, then we have the following immediate consequences.

E|Y ∗AY |p ≤ Kp np for any p ≥ 1;(4.4)

E|Y ∗AY − tr A|p ≤ Kp np/2 for any p ≥ 2;(4.5)

and if Z is i.i.d. with Y , then

(4.6) E|Y ∗AZ|p ≤ Kp np/2 for any p ≥ 2.

These Kp’s are constants only depending on p, and they do not need to have
the same value
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