Random matrices and communication systems 1C-30, Summer Semester 2007-2008

Solutions 6

1. a) Using Cauchy-Schwartz inequality, we obtain

T < /1R dF(z) x2k> ( /R dF(z) :1:2k+2> — Mok Maks2,

so a condition on the growth of the even moments of F' ensures the same growth for the odd moments.
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If in turn the above limsup is finite, then this means that there exists C' > 0 such that

(m2k)i < C2k, Vk > ko sufficiently large,
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2. a) First observe that the odd moments of F' vanish, since the distribution is symmetric (i.e.
pr(—z) = pr(z) for all x € R). By the indicated change of variable, we have for mgy:
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By integration by parts (with u(t) = sin?*~1(¢) and v(t) = sin(t)), we have
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Since ap = 7, we finally obtain
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Carleman’s condition is satisfied. An easier way to see this is to notice that F' has bounded support
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b) The density of N (0,1) is pp(z) = \/% exp (—%) Therefore p(z) = —zpp(x) and we have by

integration by parts:

[2s@petayds =~ [ @) ppe)do= [ £@)pea)da.
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where we have used the fact that the boundary term vanishes to zero as n — oo (since f(x) is by
assumption growing polynomially at infinity and pp(z), pp(z) ~ exp(—22/2)) .

Notice that m; = 0 and my = 1. We then have, by application of part the preceding formula,
Mpro = / depp(z)z 2t = (k+1) / dzpp(z) 2 = (k + 1) my.
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From this, we deduce by induction that mox1 = 0 for all £ > 0 (but this could have also been deduced
from the fact the F' is symmetric) and that
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This moments satisfy Carleman’s condition, since as before,
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and k! < kF*1/2 by Stirling’s formula.

c¢) Using the change of variable x = ¥, we obtain
oo
my = / ¥ pp(x) dzx = / " pr(e?) e¥ dy.
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Noticing that pp(e¥)e¥ = \/% exp (—%), we further obtain
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These moments do not satisfy Carleman’s condition, since
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d) In order to satisfy limy_.o F(t) = 1, we must have C' = 1/3 ., e 4"/2. Let us compute the

moments of F':
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Notice that the moments of this distribution and the preceding are the same, even though the distri-
butions are different.

A we have

e) By the change of variable y = x
/ X dF(z) = C)\/ 2F exp(—2) dz = ¢, )\/ Y eV A dy = ex AT((k +1)/N),
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where I is the Euler Gamma function. Using the approximation I'(z + 1) ~ [z]!, we see that
mi = [ o duta) ~ (5]
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so by Stirling’s formula (log(k!) ~ klogk),
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if and only if A > 1. We can deduce the following rule of thumb from the preceding argument: a distri-

bution is uniquely determined by its moments as long as its tail is not heavier than the exponential e™7.

3. By ex. 2.b), we only need to check that for any k > 0,
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where mop4+1 = 0 and moy, = m Let us therefore compute
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Using the multinomial expansion, we obtain
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Since the Y; are i.i.d. and IE(YJ-QZH) =0 for all I > 0, it is easy to see that the above sum is zero if k
is odd. Let us therefore consider
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Let us divide this sum in two parts:
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We see that the first term on the right-hand side is equal to
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The theorem will therefore be proved if we check that the second term on the right-hand side goes to
Zero as n — oo:
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