Solutions 5

1. 0) The "starter: use integration by parts:

$$
\Gamma(x+1)=\int_{0}^{\infty} t^{x} e^{-t} d t=0-\int_{0}^{\infty} x t^{x-1}\left(-e^{-t}\right) d t=x \Gamma(x)
$$

a) Let us compute (NB: the integral is taken over the set of $n \times n$ positive semi-definite matrices)

$$
\mathbb{E}(\operatorname{det} W)=\int d W p_{W}(W)(\operatorname{det} W)=C_{n, m} \int d W(\operatorname{det} W)^{m-n+1} \exp (-\operatorname{Tr}(W))=\frac{C_{n, m}}{C_{n, m+1}},
$$

since $C_{n, m+1}(\operatorname{det} W)^{m-n+1} \exp (-\operatorname{Tr}(W))$ is a probability distribution (on the set of $n \times n$ positive semi-definite matrices). Now,

$$
\frac{C_{n, m}}{C_{n, m+1}}=\frac{\prod_{j=1}^{n} \Gamma(m-j+2)}{\prod_{j=1}^{n} \Gamma(m-j+1)}=\frac{\Gamma(m+1)}{\Gamma(m-n+1)}=\frac{m!}{(m-n)!} .
$$

b) If $m=n$, then

$$
\mathbb{E}(1 / \operatorname{det} W)=C_{n, n} \int d W(\operatorname{det} W)^{-1} \exp (-\operatorname{Tr}(W))
$$

which diverges, because of the singularity at zero (consider e. g. the case $n=1$). We therefore need to assume at least that $m>n$. In this case, we have

$$
\begin{aligned}
\mathbb{E}(1 / \operatorname{det} W) & =C_{n, m} \int d W(\operatorname{det} W)^{m-n-1} \exp (-\operatorname{Tr}(W))=\frac{C_{n, m}}{C_{n, m-1}} \\
& =\frac{\prod_{j=1}^{n} \Gamma(m-j)}{\prod_{j=1}^{n} \Gamma(m-j+1)}=\frac{\Gamma(m-n)}{\Gamma(m)}=\frac{(m-n-1)!}{(m-1)!},
\end{aligned}
$$

which is indeed finite.
c) Simply notice that

$$
\psi(x+1)=\frac{d}{d x}(\log \Gamma(x+1))=\frac{d}{d x}(\log x+\log \Gamma(x))=\frac{1}{x}+\psi(x) .
$$

d) Let us compute (with slight abuses of notation, which can be made precise)

$$
\begin{aligned}
\mathbb{E}(\log \operatorname{det} W) & =C_{n, m} \int d W \log (\operatorname{det} W)(\operatorname{det} W)^{m-n} \exp (-\operatorname{Tr}(W)) \\
& =C_{n, m} \frac{\partial}{\partial m}\left(\int d W(\operatorname{det} W)^{m-n} \exp (-\operatorname{Tr}(W))\right) \\
& =C_{n, m} \frac{\partial}{\partial m}\left(\frac{1}{C_{n, m}}\right)=\frac{\partial}{\partial m}\left(\log \frac{1}{C_{n, m}}\right) \\
& =\sum_{j=1}^{n} \frac{\partial}{\partial m}(\log \Gamma(m-j+1))=\sum_{j=1}^{n} \psi(m-j+1) \\
& =\sum_{j=1}^{n}\left(\sum_{k=1}^{m-j} \frac{1}{k}-\gamma\right)=\sum_{j=1}^{n} \sum_{l=j+1}^{m} \frac{1}{l-j}-n \gamma .
\end{aligned}
$$

2. a) First observe that

$$
\frac{1}{\operatorname{det}\left(I+H H^{*}\right)}=\frac{1}{\pi^{n}} \int_{\mathbb{C}^{n}} d z \exp \left(-\|z\|^{2}-z^{*} H H^{*} z\right)=\mathbb{E}_{z}\left(\exp \left(-z^{*} H H^{*} z\right)\right)
$$

where $z \sim \mathcal{N}_{\mathbb{C}}\left(0, I_{n}\right)$. So by Fubini's theorem,

$$
\mathbb{E}_{H}\left(\frac{1}{\operatorname{det}\left(I+H H^{*}\right)}\right)=\mathbb{E}_{H}\left(\mathbb{E}_{z}\left(\exp \left(-z^{*} H H^{*} z\right)\right)\right)=\mathbb{E}_{z}\left(\mathbb{E}_{H}\left(\exp \left(-z^{*} H H^{*} z\right)\right)\right)
$$

Let h_{j} denote the $j^{\text {th }}$ column of H : we have $z^{*} H H^{*} z=\sum_{j=1}^{n} z^{*} h_{j} h_{j}^{*} z=\sum_{j=1}^{n} h_{j}^{*} z z^{*} h_{j}$. Therefore,

$$
\mathbb{E}_{H}\left(\frac{1}{\operatorname{det}\left(I+H H^{*}\right)}\right)=\mathbb{E}_{z}\left(\mathbb{E}_{H}\left(\prod_{j=1}^{n} \exp \left(-h_{j}^{*} z z^{*} h_{j}\right)\right)\right)=\mathbb{E}_{z}\left(\left(\mathbb{E}_{H}\left(\exp \left(-h^{*} z z^{*} h\right)\right)\right)^{n}\right)
$$

by independence of the columns of H (h denotes here one of these columns). Using the equality given in the problem set in the opposite direction, we get the result:

$$
\mathbb{E}_{H}\left(\frac{1}{\operatorname{det}\left(I+H H^{*}\right)}\right)=\mathbb{E}_{z}\left(\frac{1}{\operatorname{det}\left(I+z z^{*}\right)^{n}}\right)=\mathbb{E}_{z}\left(\frac{1}{\left(1+\|z\|^{2}\right)^{n}}\right) .
$$

b) The technique is the same. One simply needs to observe that

$$
\begin{aligned}
\frac{1}{\operatorname{det}\left(I+H H^{*}\right)^{k}} & =\frac{1}{\pi^{n k}} \int_{\mathbb{C}^{n k}} d z_{1} \ldots d z_{k} \exp \left(-\sum_{j=1}^{k}\left\|z_{j}\right\|^{2}-z_{j}^{*} H H^{*} z_{j}\right) \\
& =\mathbb{E}_{z_{1}, \ldots, z_{k}}\left(\exp \left(-\sum_{j=1}^{k} z_{j}^{*} H H^{*} z_{j}\right)\right)
\end{aligned}
$$

where z_{1}, \ldots, z_{k} are i.i.d. $\sim \mathcal{N}_{\mathbb{C}}\left(0, I_{n}\right)$ random vectors. This may be rewritten as

$$
\frac{1}{\operatorname{det}\left(I+H H^{*}\right)^{k}}=\mathbb{E}_{Z}\left(\exp \left(-\operatorname{Tr}\left(Z^{*} H H^{*} Z\right)\right)\right)
$$

where Z is an $n \times k$ matrix with i.i.d. $\sim \mathcal{N}_{\mathbb{C}}(0,1)$ entries. In a similar manner, one also gets

$$
\frac{1}{\operatorname{det}\left(I+Z Z^{*}\right)^{m}}=\mathbb{E}_{H}\left(\exp \left(-\operatorname{Tr}\left(H^{*} Z Z^{*} H\right)\right)\right)
$$

and

$$
\begin{aligned}
\mathbb{E}_{H}\left(\frac{1}{\operatorname{det}\left(I+H H^{*}\right)^{k}}\right) & =\mathbb{E}_{H} \mathbb{E}_{Z}\left(\exp \left(-\operatorname{Tr}\left(Z^{*} H H^{*} Z\right)\right)\right) \\
& =\mathbb{E}_{Z} \mathbb{E}_{H}\left(\exp \left(-\operatorname{Tr}\left(H^{*} Z Z^{*} H\right)\right)\right)=\mathbb{E}_{Z}\left(\frac{1}{\operatorname{det}\left(I+Z Z^{*}\right)^{m}}\right)
\end{aligned}
$$

by Fubini's theorem and the use of $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.

