Solutions 3

A.1. First, $p(a, b, c)=\frac{1}{2\left(\pi^{3 / 2}\right)} \exp \left(-\left(a^{2}+2 b^{2}+c^{2}\right) / 2\right)$. Next, writing term by term the change of variables gives

$$
\begin{aligned}
& a(\lambda, \mu, \theta)=\lambda \cos ^{2} \theta+\mu \sin ^{2} \theta=\frac{\lambda+\mu}{2}+\frac{\lambda-\mu}{2} \cos (2 \theta), \\
& b(\lambda, \mu, \theta)=-(\lambda-\mu) \sin \theta \cos \theta=-\frac{\lambda-\mu}{2} \sin (2 \theta), \\
& c(\lambda, \mu, \theta)=\lambda \sin ^{2} \theta+\mu \cos ^{2} \theta=\frac{\lambda+\mu}{2}-\frac{\lambda-\mu}{2} \cos (2 \theta),
\end{aligned}
$$

so the Jacobian is given by

$$
\begin{aligned}
J(\lambda, \mu, \theta) & =\operatorname{det}\left[\begin{array}{ccc}
\cos ^{2} \theta & \sin ^{2} \theta & -(\lambda-\mu) \sin (2 \theta) \\
-\sin \theta \cos \theta & \sin \theta \cos \theta & -(\lambda-\mu) \cos (2 \theta) \\
\sin ^{2} \theta & \cos ^{2} \theta & (\lambda-\mu) \sin (2 \theta)
\end{array}\right] \\
& =(\lambda-\mu) \operatorname{det}\left[\begin{array}{ccc}
\cos ^{2} \theta & \sin ^{2} \theta & -\sin (2 \theta) \\
-\sin \theta \cos \theta & \sin \theta \cos \theta & -\cos (2 \theta) \\
\sin ^{2} \theta & \cos ^{2} \theta & \sin (2 \theta)
\end{array}\right]=\lambda-\mu .
\end{aligned}
$$

Since $a^{2}+2 b^{2}+c^{2}=\operatorname{Tr}\left(H_{1} H_{1}^{T}\right)=\lambda^{2}+\mu^{2}$, we deduce that

$$
p(\lambda, \mu, \theta)=\frac{1}{2\left(\pi^{3 / 2}\right)} e^{-\left(\lambda^{2}+\mu^{2}\right) / 2}|\lambda-\mu| .
$$

Now, since $p(\lambda, \mu, \theta)$ is independent of $\theta, p(\theta)=\frac{2}{\pi}$ on $\left[0, \frac{\pi}{2}\right]$ and

$$
p(\lambda, \mu)=\frac{1}{4 \sqrt{\pi}} e^{-\left(\lambda^{2}+\mu^{2}\right) / 2}|\lambda-\mu| .
$$

One can check that this is indeed a joint density function on $\mathbb{R}^{2}\left(\right.$ i.e. $\left.\iint_{\mathbb{R}^{2}} d \lambda d \mu p(\lambda, \mu)=1\right)$.
Since $\lambda+\mu=\operatorname{Tr}\left(H_{1}\right)=a+c$ and $\lambda \mu=\operatorname{det}\left(H_{1}\right)=a c-b^{2}$, we have

$$
\mathbb{E}(\lambda+\mu)=0 \quad \text { and } \quad \mathbb{E}(\lambda \mu)=-\frac{1}{2} .
$$

The next computation requires some more work:

$$
\begin{aligned}
\mathbb{E}(\max \{\lambda, \mu\}) & =\iint_{\mathbb{R}^{2}} d \lambda d \mu \max \{\lambda, \mu\} p(\lambda, \mu) \\
& =\frac{1}{4 \sqrt{\pi}} \iint_{\mathbb{R}^{2}} d \lambda d \mu \max \{\lambda, \mu\}|\mu-\lambda| e^{-\left(\lambda^{2}+\mu^{2}\right) / 2} \\
& =\frac{1}{2 \sqrt{\pi}} \int_{\mathbb{R}} d \lambda \int_{-\infty}^{\lambda} d \mu \lambda(\lambda-\mu) e^{-\left(\lambda^{2}+\mu^{2}\right) / 2},
\end{aligned}
$$

by symmetry of the function. Computing integrals (using integration by parts) gives

$$
\mathbb{E}(\max \{\lambda, \mu\})=\frac{\sqrt{\pi}}{2}
$$

Finally, a computation similar to the preceding gives

$$
p(\lambda)=\frac{e^{-\lambda^{2}}}{2 \sqrt{\pi}}+\frac{e^{-\lambda^{2} / 2}}{2 \sqrt{\pi}} \lambda \int_{0}^{\lambda} d \mu e^{-\mu^{2} / 2} .
$$

A.2. The matrix of eigenvectors of H_{2} is fixed and given by

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
$$

So we have the change of variables

$$
\left[\begin{array}{ll}
a & c \\
c & a
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

i.e. $a=\frac{1}{2}(\lambda+\mu)$ and $c=\frac{1}{2}(\lambda-\mu)$. Computing the Jacobian of this linear transformation gives

$$
J(\lambda, \mu)=-\frac{1}{2} .
$$

Since $p(a, c)=\frac{1}{2 \pi} \exp \left(-\frac{a^{2}+c^{2}}{2}\right)$ and $2\left(a^{2}+c^{2}\right)=\operatorname{Tr}\left(H_{2} H_{2}^{T}\right)=\lambda^{2}+\mu^{2}$, we obtain

$$
p(\lambda, \mu)=p(a(\lambda, \mu), b(\lambda, \mu))|J(\lambda, \mu)|=\frac{1}{4 \pi} \exp \left(-\frac{\lambda^{2}+\mu^{2}}{4}\right),
$$

i.e. λ and μ are i.i.d. $\sim \mathcal{N}_{\mathbb{R}}(0,2)$ random variables.

Since $\lambda+\mu=\operatorname{Tr}\left(H_{2}\right)=2 a$ and $\lambda+\mu=\operatorname{det}\left(H_{2}\right)=a^{2}-c^{2}$, we have

$$
\mathbb{E}(\lambda+\mu)=0 \quad \text { and } \quad \mathbb{E}(\lambda \mu)=0 .
$$

Now, we also obtain by symmetry that

$$
\begin{aligned}
\mathbb{E}(\max \{\lambda, \mu\}) & =2 \int_{\mathbb{R}} d \lambda \int_{\lambda}^{\infty} d \mu \mu p(\lambda, \mu) \\
& =2 \int_{\mathbb{R}} d \lambda \frac{1}{4 \pi} e^{-\lambda^{2} / 4} \int_{\lambda}^{\infty} d \mu \mu e^{-\mu^{2} / 4} \\
& =\frac{1}{\pi} \int_{\mathbb{R}} d \lambda e^{-\lambda^{2} / 2}=\sqrt{\frac{2}{\pi}}
\end{aligned}
$$

Finally, we trivially have

$$
p(\lambda)=\frac{1}{\sqrt{4 \pi}} e^{-\lambda^{2} / 4} .
$$

B.1. The direct computation of the eigenvalues of H_{1} gives

$$
\lambda_{1}=\frac{a+c}{2}+\sqrt{\left(\frac{a-c}{2}\right)^{2}+b^{2}} \quad \text { and } \quad \lambda_{2}=\frac{a+c}{2}-\sqrt{\left(\frac{a-c}{2}\right)^{2}+b^{2}} .
$$

NB: we have written λ_{1}, λ_{2} instead of λ, μ in order to point out that λ_{1}, λ_{2} are ordered here $\left(\lambda_{1} \geq \lambda_{2}\right)$.
Noticing that $\frac{a+c}{2}, \frac{a-c}{2}$ and b are i.i.d. $\sim \mathcal{N}_{\mathbb{R}}\left(0, \frac{1}{2}\right)$ random variables, we obtain that the random vector $\left(\lambda_{!}, \lambda_{2}\right)$ is distributed as $(x+y, x-y)$ where x and y are independent, $x \sim \mathcal{N}_{\mathbb{R}}\left(0, \frac{1}{2}\right)$ and y is distributed as a Rayleigh random variable (i.e. as the modulus of a $\mathcal{N}_{\mathbb{C}}(0,1)$ random variable):

$$
p(y)=2 y \exp \left(-y^{2}\right), \quad y \geq 0 .
$$

The joint distribution of (x, y) is given by

$$
p(x, y)=\frac{1}{\sqrt{\pi}} e^{-\left(x^{2}+y^{2}\right)}(2 y), \quad x \in \mathbb{R}, y \geq 0 .
$$

The Jacobian of the linear transformation $x=\frac{\lambda_{1}+\lambda_{2}}{2}, y=\frac{\lambda_{1}-\lambda_{2}}{2}$ is

$$
J\left(\lambda_{1}, \lambda_{2}\right)=-\frac{1}{2}
$$

and we notice that $x^{2}+y^{2}=\frac{\lambda_{1}^{2}+\lambda_{2}^{2}}{2}$. Therefore,

$$
p\left(\lambda_{1}, \lambda_{2}\right)=\frac{1}{2 \sqrt{\pi}} e^{-\frac{\lambda_{1}^{2}+\lambda_{2}^{2}}{2}}\left(\lambda_{1}-\lambda_{2}\right), \quad \text { for } \lambda_{1} \geq \lambda_{2} .
$$

The joint distribution of the unordered eigenvalues (λ, μ) is therefore given by

$$
p(\lambda, \mu)=\frac{1}{4 \sqrt{\pi}} e^{-\frac{\lambda^{2}+\mu^{2}}{2}}|\lambda-\mu|, \quad \lambda, \mu \in \mathbb{R} .
$$

B.2. Computing directly the eigenvalues of H_{2} gives $\lambda=a+c$ and $\mu=a-c$. Since for any $\alpha, \beta \in \mathbb{R}$,

$$
\alpha \lambda+\beta \mu=(\alpha+\beta) a+(\alpha-\beta) c
$$

is a Gaussian random variable (being the sum of two independent Gaussian random variables), the vector (λ, μ) is a Gaussian random vector, with zero mean and covariance matrix given by

$$
\Sigma=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] .
$$

We therefore conclude that λ and μ are i.i.d. $\sim \mathcal{N}_{\mathbb{R}}(0,2)$ random variables.

