Solutions 2

1. We need to show that for any $\Sigma_1, \Sigma_2 > 0$ and $\alpha \in (0,1)$, we have

$$\alpha \log \det(I + Q\Sigma_1^{-1}) + (1 - \alpha) \log \det(I + Q\Sigma_2^{-1}) \ge \log \det(I + Q(\alpha \Sigma_1 + (1 - \alpha) \Sigma_2)^{-1}).$$

Let therefore $Z_1 \sim \mathcal{N}_{\mathbb{C}}(0, \Sigma_1)$, $Z_2 \sim \mathcal{N}_{\mathbb{C}}(0, \Sigma_2)$ be independent, and let Θ be independent of both Z_1 and Z_2 such that $\mathbb{P}(\Theta = 1) = \alpha = 1 - \mathbb{P}(\Theta = 0)$. Let also

$$Z = \begin{cases} Z_1, & \text{if } \Theta = 1, \\ Z_2, & \text{if } \Theta = 0. \end{cases}$$

We have:

$$\begin{split} I(X;X+Z) & \leq I(X;X+Z,\Theta) = I(X;\Theta) + I(X;X+Z|\Theta) \\ & = 0 + \alpha I(X;X+Z|\Theta=1) + (1-\alpha) I(X;X+Z|\Theta=0) \\ & = \alpha I(X;X+Z_1) + (1-\alpha) I(X;X+Z_2) \\ & = \alpha \log \det(I+Q\Sigma_1^{-1}) + (1-\alpha) \log \det(I+Q\Sigma_2^{-1}) \end{split}$$

On the other hand,

$$\mathbb{E}(ZZ^*) = \alpha \,\mathbb{E}(ZZ^* \mid \Theta = 1) + (1 - \alpha) \,\mathbb{E}(ZZ^* \mid \Theta = 0) = \alpha \,\Sigma_1 + (1 - \alpha) \,\Sigma_2,$$

SO

$$I(X; X+Z) \ge \log \det(I + Q(\alpha \Sigma_1 + (1-\alpha) \Sigma_2)^{-1}),$$

which concludes the proof.

2. a) By the Cauchy-Schwarz inequality, we obtain:

$$\left| \frac{1}{n} \operatorname{Tr}(A) \right| = \left| \frac{1}{n} \sum_{j=1}^{n} a_{jj} \right| \le \frac{1}{n} \sqrt{n \sum_{j=1}^{n} |a_{jj}|^2} \le \sqrt{\frac{1}{n} \sum_{j,k=1}^{n} |a_{jk}|^2} = ||A||_2.$$

For $k \in \{1, ..., n\}$, we denote by $\delta^{(k)}$ the column vector whose components are given by $\delta_j^{(k)} = 1$ if j = k, 0 otherwise. We then have

$$|||A|||_{2}^{2} \ge \max_{k \in \{1, \dots, n\}} ||A\delta^{(k)}||^{2} \ge \frac{1}{n} \sum_{k=1}^{n} ||A\delta^{(k)}||^{2} = \frac{1}{n} \sum_{j,k=1}^{n} |a_{jk}|^{2} = ||A||_{2}^{2}.$$

b) We see that since $||Ax|| \le |||A||| ||x||$ for all $x \in \mathbb{C}^n$,

$$|||AB|||_2 = \sup_{x \in \mathbb{C}^n: ||x|| = 1} ||ABx|| \le \sup_{x \in \mathbb{C}^n: ||x|| = 1} |||A|||_2 ||Bx|| = |||A|||_2 |||B|||_2.$$

Next, let us denote by $b^{(k)}$ the k-th column vector of the matrix B (i.e., $b_j^{(k)} = b_{jk}$); we have

$$||AB||_{2}^{2} = \frac{1}{n} \sum_{j,k=1}^{n} \left| \sum_{l=1}^{n} a_{jl} b_{lk} \right|^{2} = \frac{1}{n} \sum_{j,k=1}^{n} \left| (Ab^{(k)})_{j} \right|^{2} = \frac{1}{n} \sum_{k=1}^{n} ||Ab^{(k)}||^{2}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} |||A|||_{2}^{2} ||b^{(k)}||^{2} = |||A|||_{2}^{2} ||B||_{2}^{2}.$$

Finally, by choosing A and B to be the "all ones" matrices, we obtain that

$$||AB||_2 = \sqrt{\frac{1}{n} \sum_{j,k=1}^n n^2} = n^{3/2} > n = \sqrt{n} \sqrt{n} = ||A||_2 ||B||_2.$$

c) We have

$$|||A|||_2^2 = \sup_{x \in \mathbb{C}^n: ||x|| = 1} x^* A^* A x,$$

and A^*A is diagonalizable (because it is Hermitian), so $A^*A = U^*DU$ for some unitary matrix U and $D = \operatorname{diag}(\sigma_1^2, \ldots, \sigma_n^2)$. This implies that

$$|||A|||_2^2 = \sup_{x \in \mathbb{C}^n: ||x|| = 1} x^* U^* D U x = \sup_{x \in \mathbb{C}^n: ||x|| = 1} x^* D x = \sup_{x \in \mathbb{C}^n: ||x|| = 1} \sum_{j = 1}^n \sigma_j^2 |x_j|^2 = \max_{j \in \{1, \dots, n\}} \sigma_j^2.$$

Similarly,

$$||A||_2^2 = \frac{1}{n} \operatorname{Tr}(A^*A) = \frac{1}{n} \operatorname{Tr}(U^*DU) = \frac{1}{n} \operatorname{Tr}(D) = \frac{1}{n} \sum_{j=1}^n \sigma_j^2.$$

d) The condition allows to conclude only for m = 1 (and obviously, m = 0). In order to be able to conclude for any $m \ge 0$, we need to assume in addition that there exists C > 0 such that for all $n \ge 1$,

$$|||A^{(n)}||| \le C, \quad |||B^{(n)}||| \le C.$$

From this, we indeed deduce that

$$\left| \frac{1}{n} \operatorname{Tr}((A^{(n)})^{m}) - \frac{1}{n} \operatorname{Tr}((B^{(n)})^{m}) \right| = \left| \frac{1}{n} \sum_{j=1}^{m} \operatorname{Tr}\left((B^{(n)})^{j-1} \left(A^{(n)} - B^{(n)} \right) (A^{(n)})^{m-j} \right) \right|$$

$$\leq \sum_{j=1}^{m} \left| \frac{1}{n} \operatorname{Tr}\left((A^{(n)})^{m-j} \left(B^{(n)} \right)^{j-1} \left(A^{(n)} - B^{(n)} \right) \right) \right|$$

$$\leq \sum_{j=1}^{m} \| (A^{(n)})^{m-j} (B^{(n)})^{j-1} \left(A^{(n)} - B^{(n)} \right) \|_{2}$$

$$\leq \sum_{j=1}^{m} \| \| (A^{(n)})^{m-j} \|_{2} \| \| (B^{(n)})^{j-1} \|_{2} \| A^{(n)} - B^{(n)} \|_{2}$$

$$\leq m C^{m-1} \| A^{(n)} - B^{(n)} \|_{2} \xrightarrow{n \to \infty} 0.$$