Solutions 2

1. We need to show that for any $\Sigma_{1}, \Sigma_{2}>0$ and $\alpha \in(0,1)$, we have

$$
\alpha \log \operatorname{det}\left(I+Q \Sigma_{1}^{-1}\right)+(1-\alpha) \log \operatorname{det}\left(I+Q \Sigma_{2}^{-1}\right) \geq \log \operatorname{det}\left(I+Q\left(\alpha \Sigma_{1}+(1-\alpha) \Sigma_{2}\right)^{-1}\right)
$$

Let therefore $Z_{1} \sim \mathcal{N}_{\mathbb{C}}\left(0, \Sigma_{1}\right), Z_{2} \sim \mathcal{N}_{\mathbb{C}}\left(0, \Sigma_{2}\right)$ be independent, and let Θ be independent of both Z_{1} and Z_{2} such that $\mathbb{P}(\Theta=1)=\alpha=1-\mathbb{P}(\Theta=0)$. Let also

$$
Z= \begin{cases}Z_{1}, & \text { if } \Theta=1 \\ Z_{2}, & \text { if } \Theta=0\end{cases}
$$

We have:

$$
\begin{aligned}
I(X ; X+Z) & \leq I(X ; X+Z, \Theta)=I(X ; \Theta)+I(X ; X+Z \mid \Theta) \\
& =0+\alpha I(X ; X+Z \mid \Theta=1)+(1-\alpha) I(X ; X+Z \mid \Theta=0) \\
& =\alpha I\left(X ; X+Z_{1}\right)+(1-\alpha) I\left(X ; X+Z_{2}\right) \\
& =\alpha \log \operatorname{det}\left(I+Q \Sigma_{1}^{-1}\right)+(1-\alpha) \log \operatorname{det}\left(I+Q \Sigma_{2}^{-1}\right)
\end{aligned}
$$

On the other hand,

$$
\mathbb{E}\left(Z Z^{*}\right)=\alpha \mathbb{E}\left(Z Z^{*} \mid \Theta=1\right)+(1-\alpha) \mathbb{E}\left(Z Z^{*} \mid \Theta=0\right)=\alpha \Sigma_{1}+(1-\alpha) \Sigma_{2}
$$

so

$$
I(X ; X+Z) \geq \log \operatorname{det}\left(I+Q\left(\alpha \Sigma_{1}+(1-\alpha) \Sigma_{2}\right)^{-1}\right)
$$

which concludes the proof.
2. a) By the Cauchy-Schwarz inequality, we obtain:

$$
\left|\frac{1}{n} \operatorname{Tr}(A)\right|=\left|\frac{1}{n} \sum_{j=1}^{n} a_{j j}\right| \leq \frac{1}{n} \sqrt{n \sum_{j=1}^{n}\left|a_{j j}\right|^{2}} \leq \sqrt{\frac{1}{n} \sum_{j, k=1}^{n}\left|a_{j k}\right|^{2}}=\|A\|_{2}
$$

For $k \in\{1, \ldots, n\}$, we denote by $\delta^{(k)}$ the column vector whose components are given by $\delta_{j}^{(k)}=1$ if $j=k, 0$ otherwise. We then have

$$
\left\|\left\|A \left|\left\|_{2}^{2} \geq \max _{k \in\{1, \ldots, n\}}\right\| A \delta^{(k)}\left\|^{2} \geq \frac{1}{n} \sum_{k=1}^{n}\right\| A \delta^{(k)}\left\|^{2}=\frac{1}{n} \sum_{j, k=1}^{n}\left|a_{j k}\right|^{2}=\right\| A \|_{2}^{2}\right.\right.\right.
$$

b) We see that since $\|A x\| \leq\| \| A\| \| x \|$ for all $x \in \mathbb{C}^{n}$,

$$
\|\|A B\|\|_{2}=\sup _{x \in \mathbb{C}^{n}:\|x\|=1}\|A B x\| \leq \sup _{x \in \mathbb{C}^{n}:\|x\|=1}\| \| A\| \|_{2}\|B x\|=\|A\|\left\|_{2}\right\| B \|_{2}
$$

Next, let us denote by $b^{(k)}$ the k-th column vector of the matrix $B\left(i . e ., b_{j}^{(k)}=b_{j k}\right)$; we have

$$
\begin{aligned}
\|A B\|_{2}^{2} & =\frac{1}{n} \sum_{j, k=1}^{n}\left|\sum_{l=1}^{n} a_{j l} b_{l k}\right|^{2}=\frac{1}{n} \sum_{j, k=1}^{n}\left|\left(A b^{(k)}\right)_{j}\right|^{2}=\frac{1}{n} \sum_{k=1}^{n}\left\|A b^{(k)}\right\|^{2} \\
& \leq \frac{1}{n} \sum_{k=1}^{n}\left|\left\|A \left|\left\|_{2}^{2}\right\| b^{(k)}\left\|^{2}=\right\|\|A \mid\|_{2}^{2}\|B\|_{2}^{2}\right.\right.\right.
\end{aligned}
$$

Finally, by choosing A and B to be the "all ones" matrices, we obtain that

$$
\|A B\|_{2}=\sqrt{\frac{1}{n} \sum_{j, k=1}^{n} n^{2}}=n^{3 / 2}>n=\sqrt{n} \sqrt{n}=\|A\|_{2}\|B\|_{2} .
$$

c) We have

$$
\|\mid\| A\left\|\|_{2}^{2}=\sup _{x \in \mathbb{C}^{n}:\|x\|=1} x^{*} A^{*} A x\right.
$$

and $A^{*} A$ is diagonalizable (because it is Hermitian), so $A^{*} A=U^{*} D U$ for some unitary matrix U and $D=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$. This implies that

$$
\left|\left\|\left.A\left|\|_{2}^{2}=\sup _{x \in \mathbb{C}^{n}:\|x\|=1} x^{*} U^{*} D U x=\sup _{x \in \mathbb{C}^{n}:\|x\|=1} x^{*} D x=\sup _{x \in \mathbb{C}^{n}:\|x\|=1} \sum_{j=1}^{n} \sigma_{j}^{2}\right| x_{j}\right|^{2}=\max _{j \in\{1, \ldots, n\}} \sigma_{j}^{2}\right.\right.
$$

Similarly,

$$
\|A\|_{2}^{2}=\frac{1}{n} \operatorname{Tr}\left(A^{*} A\right)=\frac{1}{n} \operatorname{Tr}\left(U^{*} D U\right)=\frac{1}{n} \operatorname{Tr}(D)=\frac{1}{n} \sum_{j=1}^{n} \sigma_{j}^{2} .
$$

d) The condition allows to conclude only for $m=1$ (and obviously, $m=0$). In order to be able to conclude for any $m \geq 0$, we need to assume in addtion that there exists $C>0$ such that for all $n \geq 1$,

$$
\left\|\left|A^{(n)}\right|\right\| \leq C, \quad\left\|\mid B^{(n)}\right\| \| \leq C
$$

From this, we indeed deduce that

$$
\begin{aligned}
\left|\frac{1}{n} \operatorname{Tr}\left(\left(A^{(n)}\right)^{m}\right)-\frac{1}{n} \operatorname{Tr}\left(\left(B^{(n)}\right)^{m}\right)\right| & =\left|\frac{1}{n} \sum_{j=1}^{m} \operatorname{Tr}\left(\left(B^{(n)}\right)^{j-1}\left(A^{(n)}-B^{(n)}\right)\left(A^{(n)}\right)^{m-j}\right)\right| \\
& \leq \sum_{j=1}^{m}\left|\frac{1}{n} \operatorname{Tr}\left(\left(A^{(n)}\right)^{m-j}\left(B^{(n)}\right)^{j-1}\left(A^{(n)}-B^{(n)}\right)\right)\right| \\
& \leq \sum_{j=1}^{m}\left\|\left(A^{(n)}\right)^{m-j}\left(B^{(n)}\right)^{j-1}\left(A^{(n)}-B^{(n)}\right)\right\|_{2} \\
& \leq \sum_{j=1}^{m}\left|\| (A ^ { (n) }) ^ { m - j } \| \left\|_ { 2 } \left|\left\|\left(B^{(n)}\right)^{j-1} \mid\right\|\left\|_{2}\right\| A^{(n)}-B^{(n)} \|_{2}\right.\right.\right. \\
& \leq m C^{m-1}\left\|A^{(n)}-B^{(n)}\right\|_{2} \underset{n \rightarrow \infty}{ } 0 .
\end{aligned}
$$

