Solutions 1

- **1.** First of all, since λ is an eigenvalue of A, there exists $u \in \mathbb{C}^n$ such that $u \neq 0$ and $Au = \lambda u$. In particular, $u^*Au = \lambda u^*u$.
- a1) If $A^* = A$, then

$$\lambda u^* u = u^* A u = u^* A^* u = (Au)^* u = (\lambda u)^* u = \overline{\lambda} u^* u,$$

- i.e. $\lambda \in \mathbb{R}$, since $u^*u \neq 0$.
- a2) If $A^* = -A$, then similarly,

$$\lambda u^* u = u^* A u = -u^* A^* u = -\overline{\lambda} u^* u,$$

- i.e. $\lambda \in i\mathbb{R}$, since $u * u \neq 0$.
- b1) If $a_{jk} \in \mathbb{R}$ for all $j, k \in \{1, ..., n\}$, then we have

$$\overline{Au} = \overline{\lambda u}$$
, so $A\overline{u} = \overline{\lambda} \overline{u}$.

- i.e. $\overline{\lambda}$ is also an eigenvalue of A.
- b2) If $a_{jk} \in i\mathbb{R}$ for all $j, k \in \{1, ..., n\}$, then we have

$$\overline{Au} = \overline{\lambda u}, \text{ so } -A\overline{u} = \overline{\lambda}\overline{u}.$$

- i.e. $-\overline{\lambda}$ is also an eigenvalue of A.
- c) If A is positive semi-definite, then $\lambda u^*u = u^*Au \ge 0$ by assumption, so $\lambda \ge 0$, since $u^*u > 0$.
- d1) If $A^*A = I$, then

$$|\lambda|^2 ||u||^2 = ||\lambda u||^2 = ||Au||^2 = u^* A^* A u = u^* u$$
, so $|\lambda| = 1$.

- d2) Notice that $(A^2)_{jk} = 1$ if j + k = n or j = k = n, and 0 otherwise. Therefore, is easy to infer that $A^4 = I$, so that whenever λ is an eigenvalue of A, we have $\lambda^4 = 1$, i.e. $\lambda \in \{1, i, -1, -i\}$.
- e1) If $a_{jk} \geq 0$ for all $j, k \in \{1, ..., n\}$ and $Au = \lambda u$, then let $l = \operatorname{argmax}_j |u_j|$. We have

$$|\lambda u_l| = \left| \sum_{k=1}^n a_{lk} u_k \right| \le \sum_{k=1}^n a_{lk} |u_k| \le \sum_{k=1}^n a_{lk} |u_l|.$$

Since $u \neq 0$, $|u_l| > 0$, so

$$|\lambda| \le \sum_{k=1}^{n} a_{lk} \le \max_{j \in \{1, \dots, n\}} \sum_{k=1}^{n} a_{jk}.$$

e2) It is a direct consequence of e1), since $\sum_{k=1}^{n} a_{jk} = 1$ for all $j \in \{1, \dots, n\}$.

f) Let again $l = \operatorname{argmax}_{i} |u_{i}|$. $Au = \lambda u$ implies that

$$(\lambda - a_{ll}) u_l = \sum_{k=1, k \neq l}^n a_{lk} u_k,$$

so

$$|\lambda - a_{ll}| |u_l| \le \sum_{k=1, k \ne l}^n |a_{lk}| |u_k| \le \sum_{k=1, k \ne l}^n |a_{lk}| |u_l|.$$

This in turn implies (since $|u_l| > 0$) that

$$|\lambda - a_{ll}| \le \sum_{k=1, k \ne l}^{n} |a_{lk}|,$$

SO

$$\lambda \in \bigcup_{j=1}^{n} B\left(a_{jj}, \sum_{k=1, k \neq j}^{n} |a_{jk}|\right).$$

2. $u^*Au \geq 0$ for all $u \in \mathbb{C}^n$ implies that

- a) $a_{jj} \geq 0$ (take $u = e_j$).
- b) $|\alpha|^2 a_{jj} + \alpha \overline{\beta} a_{jk} + \overline{\alpha} \beta a_{kj} + |\beta|^2 a_{kk} \ge 0$ (take $u = \alpha e_j + \beta e_k$).

Since $a_{jj}, a_{kk} \in \mathbb{R}$, choosing $\alpha = \beta = 1$ gives $a_{jk} + a_{kj} \in \mathbb{R}$, i.e., $\operatorname{Im}(a_{kj}) = -\operatorname{Im}(a_{jk})$. On the other hand, choosing $\alpha = i$ and $\beta = 1$ gives $i(a_{jk} - a_{kj}) \in \mathbb{R}$, i.e., $\operatorname{Re}(a_{kj}) = \operatorname{Re}(a_{jk})$. In total, this implies that $a_{kj} = \overline{a_{jk}}$, i.e., that $A = A^*$.

c) Taking $\beta = 1$ in the preceding inequality and α arbitrary gives

$$|\alpha|^2 a_{jj} + 2\operatorname{Re}(\alpha a_{jk}) + a_{kk} \ge 0.$$

Choosing $\alpha = re^{-i\arg(a_{jk})}$ gives

$$r^2 a_{jj} + 2r |a_{jk}| + a_{kk} \ge 0.$$

Since r is arbitrary, this implies that the discriminant of this second order equation is non-positive, i.e. that

$$|a_{ik}|^2 - a_{ij}a_{kk} \le 0.$$