Solutions 1

1. First of all, since λ is an eigenvalue of A, there exists $u \in \mathbb{C}^{n}$ such that $u \neq 0$ and $A u=\lambda u$. In particular, $u^{*} A u=\lambda u^{*} u$.
a1) If $A^{*}=A$, then

$$
\lambda u^{*} u=u^{*} A u=u^{*} A^{*} u=(A u)^{*} u=(\lambda u)^{*} u=\bar{\lambda} u^{*} u,
$$

i.e. $\lambda \in \mathbb{R}$, since $u^{*} u \neq 0$.
a2) If $A^{*}=-A$, then similarly,

$$
\lambda u^{*} u=u^{*} A u=-u^{*} A^{*} u=-\bar{\lambda} u^{*} u
$$

i.e. $\lambda \in i \mathbb{R}$, since $u * u \neq 0$.
b1) If $a_{j k} \in \mathbb{R}$ for all $j, k \in\{1, \ldots, n\}$, then we have

$$
\overline{A u}=\overline{\lambda u}, \quad \text { so } \quad A \bar{u}=\bar{\lambda} \bar{u} .
$$

i.e. $\bar{\lambda}$ is also an eigenvalue of A.
b2) If $a_{j k} \in i \mathbb{R}$ for all $j, k \in\{1, \ldots, n\}$, then we have

$$
\overline{A u}=\overline{\lambda u}, \quad \text { so } \quad-A \bar{u}=\bar{\lambda} \bar{u} .
$$

i.e. $-\bar{\lambda}$ is also an eigenvalue of A.
c) If A is positive semi-definite, then $\lambda u^{*} u=u^{*} A u \geq 0$ by assumption, so $\lambda \geq 0$, since $u^{*} u>0$.
d1) If $A^{*} A=I$, then

$$
|\lambda|^{2}\|u\|^{2}=\|\lambda u\|^{2}=\|A u\|^{2}=u^{*} A^{*} A u=u^{*} u, \quad \text { so }|\lambda|=1 .
$$

d2) Notice that $\left(A^{2}\right)_{j k}=1$ if $j+k=n$ or $j=k=n$, and 0 otherwise. Therefore, is is easy to infer that $A^{4}=I$, so that whenever λ is an eigenvalue of A, we have $\lambda^{4}=1$, i.e. $\lambda \in\{1, i,-1,-i\}$.
e1) If $a_{j k} \geq 0$ for all $j, k \in\{1, \ldots, n\}$ and $A u=\lambda u$, then let $l=\operatorname{argmax}_{j}\left|u_{j}\right|$. We have

$$
\left|\lambda u_{l}\right|=\left|\sum_{k=1}^{n} a_{l k} u_{k}\right| \leq \sum_{k=1}^{n} a_{l k}\left|u_{k}\right| \leq \sum_{k=1}^{n} a_{l k}\left|u_{l}\right| .
$$

Since $u \neq 0,\left|u_{l}\right|>0$, so

$$
|\lambda| \leq \sum_{k=1}^{n} a_{l k} \leq \max _{j \in\{1, \ldots, n\}} \sum_{k=1}^{n} a_{j k} .
$$

$\mathrm{e} 2)$ It is a direct consequence of e 1$)$, since $\sum_{k=1}^{n} a_{j k}=1$ for all $j \in\{1, \ldots, n\}$.
f) Let again $l=\operatorname{argmax}_{j}\left|u_{j}\right| . A u=\lambda u$ implies that

$$
\left(\lambda-a_{l l}\right) u_{l}=\sum_{k=1, k \neq l}^{n} a_{l k} u_{k},
$$

so

$$
\left|\lambda-a_{l l}\right|\left|u_{l}\right| \leq \sum_{k=1, k \neq l}^{n}\left|a_{l k}\right|\left|u_{k}\right| \leq \sum_{k=1, k \neq l}^{n}\left|a_{l k}\right|\left|u_{l}\right| .
$$

This in turn implies (since $\left|u_{l}\right|>0$) that

$$
\left|\lambda-a_{l l}\right| \leq \sum_{k=1, k \neq l}^{n}\left|a_{l k}\right|,
$$

so

$$
\lambda \in \bigcup_{j=1}^{n} B\left(a_{j j}, \sum_{k=1, k \neq j}^{n}\left|a_{j k}\right|\right) .
$$

2. $u^{*} A u \geq 0$ for all $u \in \mathbb{C}^{n}$ implies that
a) $a_{j j} \geq 0\left(\right.$ take $\left.u=e_{j}\right)$.
b) $|\alpha|^{2} a_{j j}+\alpha \bar{\beta} a_{j k}+\bar{\alpha} \beta a_{k j}+|\beta|^{2} a_{k k} \geq 0$ (take $u=\alpha e_{j}+\beta e_{k}$).

Since $a_{j j}, a_{k k} \in \mathbb{R}$, choosing $\alpha=\beta=1$ gives $a_{j k}+a_{k j} \in \mathbb{R}$, i.e., $\operatorname{Im}\left(a_{k j}\right)=-\operatorname{Im}\left(a_{j k}\right)$. On the other hand, choosing $\alpha=i$ and $\beta=1$ gives $i\left(a_{j k}-a_{k j}\right) \in \mathbb{R}$, i.e., $\operatorname{Re}\left(a_{k j}\right)=\operatorname{Re}\left(a_{j k}\right)$. In total, this implies that $a_{k j}=\overline{a_{j k}}$, i.e., that $A=A^{*}$.
c) Taking $\beta=1$ in the preceding inequality and α arbitrary gives

$$
|\alpha|^{2} a_{j j}+2 \operatorname{Re}\left(\alpha a_{j k}\right)+a_{k k} \geq 0
$$

Choosing $\alpha=r e^{-i \arg \left(a_{j k}\right)}$ gives

$$
r^{2} a_{j j}+2 r\left|a_{j k}\right|+a_{k k} \geq 0 .
$$

Since r is arbitrary, this implies that the discriminant of this second order equation is non-positive, i.e. that

$$
\left|a_{j k}\right|^{2}-a_{j j} a_{k k} \leq 0 .
$$

