

The Smallest Eigenvalue of a Large Dimensional Wishart Matrix Author(s): Jack W. Silverstein Source: *The Annals of Probability*, Vol. 13, No. 4, (Nov., 1985), pp. 1364-1368 Published by: Institute of Mathematical Statistics Stable URL: <u>http://www.jstor.org/stable/2244186</u> Accessed: 19/05/2008 08:03

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ims.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL WISHART MATRIX

By JACK W. SILVERSTEIN¹

Weizmann Institute of Science

For positive integers s, n let $M_s = (1/s)V_sV_s^T$, where V_s is an $n \times s$ matrix composed of i.i.d. N(0, 1) random variables. Assume n = n(s) and $n/s \to y \in (0, 1)$ as $s \to \infty$. Then it is shown that the smallest eigenvalue of M_s converges almost surely to $(1 - \sqrt{y})^2$ as $s \to \infty$.

For each s = 1, 2... let n = n(s) be a positive integer such that $n/s \to y > 0$ as $s \to \infty$. Let V_s be an $n \times s$ matrix whose entries are i.i.d. N(0, 1) random variables and let $M_s = (1/s)V_sV_s^T$. The random matrix $V_sV_s^T$ is commonly referred to as the Wishart matrix $W(I_n, s)$.

It is well known [Marĉenko and Pastur (1967), Wachter (1978)] that the empirical distribution function F_s of the eigenvalues of M_s [$F_s(x) \equiv (1/n) \times$ (number of eigenvalues of $M_s \leq x$)] converges almost surely as $s \to \infty$ to a nonrandom probability distribution function F_y having a density with positive support on $[(1 - \sqrt{y})^2, (1 + \sqrt{y})^2]$, and when y > 1, F_y yields additional mass on $\{0\}$. It is also known [Geman (1980)] that the maximum eigenvalue $\lambda_{\max}^{(s)}$ of M_s converges a.s. to $(1 + \sqrt{y})^2$ as $s \to \infty$. [The statement of this result in Geman (1980) has all the M_s constructed from one doubly infinite array of i.i.d. random variables. However, it is obvious from the proof that no relation on the entries of V_s for different s is needed.] These results are established under assumptions more general on the entries of V_s than Gaussian distributed, involving conditions on the moments of these random variables.

The present paper will prove the following

THEOREM. For y < 1 the smallest eigenvalue $\lambda_{\min}^{(s)}$ of M_s converges a.s. to $(1 - \sqrt{y})^2$ as $s \to \infty$.

The proof relies on Gerŝgorin's theorem [Gerŝgorin (1931)] which states: Each eigenvalue of an $n \times n$ complex matrix $A = (a_{ij})$ lies in at least one of the disks

$$|z-a_{jj}| \leq \sum_{i\neq j} |a_{ij}|, \qquad j=1,2,\ldots,n,$$

in the complex plane.

Gerŝgorin's theorem will be applied to a tridiagonal matrix orthogonally similar to M_s . This result is relevant to areas in multivariate statistics, for example regression or tests using the central multivariate F matrix, where the

Received May 1984; revised November 1984.

¹On leave from North Carolina State University. Supported under NSF Grant MCS-8101703A01. AMS 1980 subject classifications. Primary 60F15; secondary 62H99.

Key words and phrases. Smallest eigenvalue of random matrix, Gerŝgorin's theorem, χ^2 distribution.

boundedness of the largest eigenvalue of M_s^{-1} , namely $[\lambda_{\min}(s)]^{-1}$, is needed. The truth of the theorem for non-Wishart matrices would also be important. However, as will be seen, the proof relies strongly on the variables being normal, so a different method appears to be necessary for more general sample covariance matrices.

PROOF OF THE THEOREM. Since F_y has positive support to the right of $(1 - \sqrt{y})^2$ we immediately have

(1)
$$\limsup_{s \to \infty} \lambda_{\min}^{(s)} \le \left(1 - \sqrt{y}\right)^2 \quad \text{a.s.}$$

Assume s is sufficiently large so that n < s. Let O_s^1 be $s \times s$ orthogonal, its first column being the normalization of the first row of V_s , the remaining columns independent of the rest of V_s . The columns of O_s^1 can be constructed, for example, by performing the Gram–Schmidt orthonormalization process to the first row of V_s , together with s - 1 linearly independent nonrandom s-dimensional vectors. We have that $V_s^1 \equiv V_s O_s^1$ is such that its first row is $(X_s, 0, 0, \ldots, 0)$, where X_s^2 is $\chi^2(s), X_s \ge 0$, and the remaining rows are again made up of i.i.d. N(0, 1) random variables. (It will also follow that X_s is independent of the remaining elements of V_s^1 but this fact will not be needed.)

Let O_n^1 be $n \times n$ orthogonal of the form

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & O_{n-1}^1 \\ 0 & & & \end{pmatrix}$$

where O_{n-1}^1 is orthogonal, its first row being the normalization of $\{(V_s^1)_{j1}\}_{j=2}^n$ (as a vector in \mathbb{R}^{n-1}), the rest independent of V_s^1 . Then $V_s^2 \equiv O_n^1 V_s^1$ is of the form

$$\begin{pmatrix} X_s & 0 & \cdots & 0 \\ Y_{n-1} & & & \\ 0 & & & \\ \vdots & & W_{n-1,s-1} \\ 0 & & & \end{pmatrix},$$

where Y_{n-1}^2 is $\chi^2(n-1)$, $Y_{n-1} \ge 0$ and $W_{n-1,s-1}$ is $(n-1) \times (s-1)$, made up of i.i.d. N(0,1) random variables.

We then multiply V_s^2 on the right by an $s \times s$ orthogonal matrix O_s^2 of the form

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & & & & & \\ 0 & & & & & \\ \vdots & & O_{s-1}^2 & & & \\ 0 & & & & & \end{pmatrix},$$

where the first column of O_{s-1}^2 is the normalization of the first row of $W_{n-1,s-1}$,

J. W. SILVERSTEIN

and then multiply $V_s^2 O_s^2$ on the left by an appropriate $n \times n$ orthogonal matrix, and so on. In the end we will have the existence of two orthogonal matrices O_n and O_s such that

$$O_n V_s O_s = \begin{pmatrix} X_s & 0 & 0 & 0 & & \cdots & & 0 \\ Y_{n-1} & X_{s-1} & 0 & 0 & & \cdots & & 0 \\ 0 & Y_{n-2} & X_{s-2} & 0 & & \cdots & & 0 \\ 0 & 0 & \vdots & \vdots & & & \ddots & & 0 \\ \vdots & \vdots & & & & & & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & Y_1 & X_{s-(n-1)} & 0 & \cdots & 0 \end{pmatrix},$$

where X_i^2 is $\chi^2(i)$, $X_i \ge 0$, and Y_j^2 is $\chi^2(j)$, $Y_j \ge 0$. The fact that these random variables are independent will not be needed.

It follows that M_s is orthogonally similar to a tridiagonal matrix, the first and last rows being, respectively,

$$(1/s)(X_s^2, X_sY_{n-1}, 0, \dots, 0),$$

 $(1/s)(0, 0, \dots, 0, X_{s-n+2}Y_1, Y_1^2 + X_{s-n+1}^2),$

while the three nonzero elements in the j + 1st row (j = 1, 2, ..., n - 2) are

$$(1/s)(X_{s-j+1}Y_{n-j},Y_{n-j}^2+X_{s-j}^2,X_{s-j}Y_{n-j-1})$$

By Gerŝgorin's theorem we have that

(2)
$$\lambda_{\min}^{(s)} \geq \min \left[(1/s) \left(X_s^2 - X_s Y_{n-1} \right), (1/s) \left(Y_1^2 + X_{s-n+1}^2 - X_{s-n+2} Y_1 \right), \\ \min_{j \leq n-2} (1/s) \left(Y_{n-j}^2 + X_{s-j}^2 - \left(X_{s-j+1} Y_{n-j} + X_{s-j} Y_{n-j-1} \right) \right) \right].$$

We have $\chi^2(1)/m \to {}_{a.s.}0$ and $\chi^2(m)/m \to {}_{a.s.}1$ as $m \to \infty$. Since $s/n \to y \in (0,1)$ as $s \to \infty$ we have

$$(1/s)(X_s^2 - X_s Y_{n-1}) \to_{a.s.} 1 - \sqrt{y},$$

$$(1/s)(Y_1^2 + X_{s-n+1}^2 - X_{s-n+2}Y_1) \to_{a.s.} 1 - y \quad \text{as } s \to \infty.$$

Notice $1 - y > 1 - \sqrt{y} > (1 - \sqrt{y})^2$.

Applying Markov's inequality to $P(\exp(t\chi^2(m) - tm) > \exp(ts\varepsilon))$ and $P(\exp(-t\chi^2(m) + tm) > \exp(ts\varepsilon))$ for sufficiently small t > 0, it is straightforward to show for any $\varepsilon > 0$ the existence of an $a \in (0, 1)$ depending only on ε such that

$$P(|(\chi^2(m)/s) - (m/s)| > \varepsilon) \le 2a^s$$

for all s > 0 and all positive integers $m \leq s$.

Therefore we can apply Boole's inequality on 2n - 2 (\leq constant $\cdot s$) events to conclude that for any $\varepsilon > 0$

$$P\Big(\max_{s-(n-2)\leq m\leq s}|(X_m^2/s)-m/s|>\varepsilon \text{ or }\max_{m\leq n-1}|(Y_m^2/s)-m/s|>\varepsilon\Big)$$

1366

is summable. Therefore

$$\max\left[\max_{s-(n-2)\leq m\leq s}|(X_m^2/s)-m/s|,\max_{m\leq n-1}|(Y_m^2/s)-m/s|\right]\to_{a.s.}0\quad \text{as }s\to\infty.$$

We have

$$\begin{split} A_{j}^{s} &\equiv \left| (1/s) \Big(Y_{n-j}^{2} + X_{s-j}^{2} - \big(X_{s-j+1} Y_{n-j} + X_{s-j} Y_{n-j-1} \big) \Big) \\ &- \Big((n-j)/s + (s-j)/s - \big(\sqrt{(s-j+1)/s} \sqrt{(n-j)/s} \\ &+ \sqrt{(s-j)/s} \sqrt{(n-j-1)/s} \big) \big) \right| \\ &\leq \left| \Big(Y_{n-j}^{2}/s \Big) - (n-j)/s \Big| + \left| \Big(X_{s-j}^{2}/s \Big) - (s-j)/s \Big| \\ &+ \left| \Big(X_{s-j+1}/\sqrt{s} \Big) \Big(Y_{n-j}/\sqrt{s} \Big) - \sqrt{(s-j+1)/s} \sqrt{(n-j-1)/s} \right| \\ &+ \left| \Big(X_{s-j}/\sqrt{s} \Big) \Big(Y_{n-j-1}/\sqrt{s} \Big) - \sqrt{(s-j)/s} \sqrt{(n-j-1)/s} \right|. \end{split}$$

Using the inequality $|\underline{a}\underline{b} - ab| \le |\underline{a}^2 - a^2|^{1/2}|\underline{b}^2 - b^2|^{1/2} + |a||\underline{b}^2 - b^2|^{1/2} + |b||\underline{a}^2 - a^2|^{1/2}$ for $a, b, \underline{a}, \underline{b}$ nonnegative, together with the fact that the nonrandom fractions making up A_j^s are bounded by 1, we conclude that

$$\max_{j \le n-2} A_j^s \to_{\text{a.s.}} 0 \quad \text{as } s \to \infty.$$

The expression

$$(n-j)/s + (s-j)/s - (\sqrt{(s-j+1)/s}\sqrt{(n-j)/s} + \sqrt{(s-j)/s}\sqrt{(n-j-1)/s})$$

achieves its smallest value when j = 1, for which we get

$$(n-1)/s + (s-1)/s - (\sqrt{(n-1)/s} + \sqrt{(s-1)/s}\sqrt{(n-2)/s})$$

 $\to y + 1 - 2\sqrt{y} = (1 - \sqrt{y})^2 \text{ as } s \to \infty.$

Therefore, from (2) we have

$$\liminf_{s\to\infty}\lambda_{\min}^{(s)} \ge \left(1-\sqrt{y}\right)^2 \quad \text{a.s.}$$

which, together with (1) gives us

$$\lim_{s \to \infty} \lambda_{\min}^{(s)} = \left(1 - \sqrt{y}\right)^2 \quad \text{a.s.} \qquad \Box$$

We note that the above proof can easily be modified to show $\lambda_{\max}^{(s)} \to (1 + \sqrt{y})^2$ for all y > 0.

REFERENCES

- [1] GEMAN, S. (1980). A limit theorem for the norm of random matrices. Ann. Probab. 8 252-261.
- [2] GERŜGORIN, S. A. (1931). Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 6 749-754.

J. W. SILVERSTEIN

- [3] MARĈENKO, V. A. and PASTUR, L. A. (1967). Distributions of eigenvalues of some sets of random matrices. Math. USSR-Sb. 1 507-536.
- [4] WACHTER, K. W. (1978). The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Probab. 6 1-18.

Jack W. Silverstein Department of Mathematics Box 8205 North Carolina State University Raleigh, North Carolina 27695-8205

.

1368

.