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Abstract—In this first part, analytical methods for finding
moments of random Vandermonde matrices are developed. Van-
dermonde Matrices play an important role in signal processing
and communication applications such as direction of arrival esti-
mation, precoding or sparse sampling theory for example. Within
this framework, we extend classical freeness results on random
matrices with i.i.d entries and show that Vandermonde structured
matrices can be treated in the same vein with different tools.
We focus on various types of Vandermonde matrices, namely
Vandermonde matrices with or without uniformly distribute d
phases, as well as generalized Vandermonde matrices (with non-
uniform distribution of powers). In each case, we provide explicit
expressions of the moments of the associated Gram matrix,
as well as more advanced models involving the Vandermonde
matrix. Comparisons with classical i.i.d. random matrix theory
are provided and free deconvolution results are also discussed.

Index Terms—Vandermonde matrices, Random Matrices, de-
convolution, limiting eigenvalue distribution, MIMO.

I. I NTRODUCTION

We will consider Vandermonde matricesV of dimension
N × L of the form

V =
1√
N











1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...
e−j(N−1)ω1 · · · e−j(N−1)ωL











(1)

where ω1,...,ωL are independent and identically distributed
(phases) taking values on[0, 2π). Such matrices occur fre-
quently in many applications, such as finance [1], signal
array processing [2], [3], [4], [5], [6], ARMA processes [7],
cognitive radio [8], security [9], wireless communications [10]
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and biology [11] and have been much studied. The main results
are related to the distribution of the determinant of (1) [12].
The large majority of known results on the eigenvalues of
the associated Gram matrix concern Gaussian matrices [13]
or matrices with independent entries. None have dealt with
the Vandermonde case. For the Vandermonde case, the results
depend heavily on the distribution of the entries, and do not
give any hint on the asymptotic behaviour as the matrices
become large. In the realm of wireless channel modelling, [14]
has provided some insight on the behaviour of the eigenvalues
of random Vandermonde matrices for a specific case, without
any formal proof. We prove here that the case is in fact more
involved than what was claimed.

In many applications,N andL are quite large, and we may
be interested in studying the case where both go to∞ at a
given ratio, with L

N → c. Results in the literature say very
little on the asymptotic behaviour of (1) under this growth
condition. The results, however, are well known for other
models. The factor 1√

N
, as well as the assumption that the

Vandermonde entriese−jωi lie on the unit circle, are included
in (1) to ensure that our analysis will give limiting asymptotic
behaviour. Without this assumption, the problem at hand is
more involved, since the rows of the Vandermonde matrix with
the highest powers would dominate in the calculations of the
moments when the matrices grow large, and also grow faster to
infinity than the 1√

N
factor in (1), making asymptotic analysis

difficult. In general, often the moments, not the moments
of the determinants, are the quantities we seek. Results in
the literature also say very little on the moments of Vander-
monde matrices. The literature says very little on the mixed
moments of Vandermonde matrices and matrices independent
from them. This is in contrast to Gaussian matrices, where
exact expressions [15] and their asymptotic behaviour [16]
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are known using the concept of freeness [16] which is central
for describing the mixed moments.

The derivation of the moments are a useful basis for per-
forming deconvolution. For Gaussian matrices, deconvolution
has been handled in the literature [17], [18], [15], [19]. Similar
flavored results will here be proved for Vandermonde matrices.
Concerning the moments, it will be the asymptotic moments
of random matrices of the formVH

V which will be studied,
where(.)H denotes hermitian transpose. We will also consider
mixed moments of the formDV

H
V, whereD is a square

diagonal matrix independent fromV.
We will also extend our results to what are called general-

ized Vandermonde matrices, i.e. matrices where the columns
do not consist of uniformly distributed powers. These are
important for applications to finance [1]. The tools used
for standard Vandermonde matrices in this paper will allow
us to find the asymptotic behaviour of many generalized
Vandermonde matrices.

While we provide the full computation of lower order
moments, we also describe how the higher order moments
can be computed. Tedious evaluation of many integrals is
needed for this, but numerical methods can also be applied.
Surprisingly, it turns out that the first three limit momentscan
be expressed in terms of the Marc̆henko Pastur law [16], [20].
For higher order moments this is not the case, although we
state an interesting inequality involving the Vandermondelimit
moments and the moments of the classical Poisson distribution
and the Marc̆henko Pastur law, also known as the free Poisson
distribution [16].

This paper is organized as follows: Section II contains
a general result for the mixed moments of Vandermonde
matrices and matrices independent from them. We will differ
between the case where the phaseω in (1) are uniformly
distributed on[0.2π), and the more general cases. The case of
uniformly distributed phases is handled in section III. In this
case it turns out that one can have very nice expressions, for
both the asymptotic moments, as well as for the lower order
moments. Section IV considers the more general case when
ω has a continous density, and shows how the asymptotics
can be described in terms of the case whenω is uniformly
distributed. The case where the density ofω has singularities
displays different asymptotic behaviour, and is handled insec-
tion V. Section VI states results on generalized Vandermonde
matrices. The case when the powers also have some random
distributions is also handled here. Section VII handles mixed
moments of independent Vandermonde matrices. Section VIII
discusses our results and puts them in a general deconvolution
perspective, comparing with other deconvolution results,such
as those for Gaussian deconvolution.

In the following, upper (lower boldface) symbols will be
used for matrices (column vectors) whereas lower symbols will
represent scalar values,(.)T will denote transpose operator,
(.)⋆ conjugation and(.)H =

(

(.)T
)⋆

hermitian transpose.In

will represent then × n identity matrix. We lettrn be the
normalized trace for matrices of ordern×n, andTr the non-
normalized trace.V will be used only to denote Vandermonde
matrices with a given phase distribution. The dimensions ofthe
Vandermonde matrices will always beN ×L unless otherwise

stated, and the phase distribution of the Vandermonde matrices
will always be denoted byω.

II. A GENERAL RESULT FOR THE MIXED MOMENTS OF

VANDERMONDE MATRICES

We first state a general theorem applicable to Vandermonde
matrices with any phase distribution. The proof for this the-
orem, as well as for theorems succeeding it, are based on
calculations where partitions are highly involved. We denote
by P(n) the set of all partitions of{1, ..., n}, and we will use
ρ as notation for a partition inP(n). The set of partitions will
be equipped with the refinement order≤, i.e. ρ1 ≤ ρ2 if and
only if any block ofρ1 is contained within a block ofρ2. Also,
we will write ρ = {ρ1, ..., ρk}, whereρj are the blocks ofρ,
and let |ρ| denote the number of blocks inρ. We denote by
0n the partition withn blocks, and by1n the partition with1
block.

In the following Dr(N), 1 ≤ r ≤ n are diagonalL × L
matrices, andV is of the form (1). We will attempt to find

Mn = limN→∞ E[trL( D1(N)VH
VD2(N)VH

V

· · · × Dn(N)VH
V)]

(2)

for many types of Vandermonde matrices, under the assump-
tion that L

N → c, and under the assumption that theDr(N)
have a joint limit distribution asN → ∞ in the following
sense:

Definition 1: We will say that the{Dr(N)}1≤r≤n have a
joint limit distribution asN → ∞ if the limit

Di1,...,is
= lim

N→∞
trL (Di1(N) · · ·Dis

(N)) (3)

exists for all choices ofi1, ..., is. For ρ = {ρ1, ..., ρk}, with
ρi = {ρi1, ..., ρi|ρi|}, we also defineDρi

= Diρi1
,...,iρi|ρi|

, and

Dρ =
∏k

i=1 Dρi
.

Had we replaced Vandermonde matrices with Gaussian ma-
trices, free deconvolution results [19] could help us compute
the quantitiesDi1,...,is

from Mn. For this, the cumulants of
the Gaussian matrices are needed, which asymptotically have
a very nice form. For Vandermonde matrices, the role of
cumulants is taken by the following quantites

Definition 2: Define

Kρ,ω,N = 1
Nn+1−|ρ|×
∫

(0,2π)|ρ|

∏n
k=1

1−e
jN(ωb(k−1)−ωb(k))

1−e
j(ωb(k−1)−ωb(k))

,

dω1 · · · dω|ρ|,

(4)

where ωρ1 , ..., ωρ|ρ|
are i.i.d. (indexed by the blocks ofρ),

all with the same distribution asω, and whereb(k) is the
block of ρ which containsk (where notation is cyclic, i.e.
b(−1) = b(n)). If the limit

Kρ,ω = lim
N→∞

Kρ,ω,N

exists, thenKρ,ω is called a Vandermonde mixed moment
expansion coefficient.

These coefficients will for Vandermonde matrices play the
same role as the cumulants do for large Gaussian matrices.
We will not call them cumulants, however, since they don’t
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share the same multiplicative properties (embodied in whatis
called the moment cumulant formula).

The following is the main result of the paper. Different
versions of it adapted to different Vandermonde matrices will
be stated in the succeeding sections.

Theorem 1:Assume that the{Dr(N)}1≤r≤n have a joint
limit distribution asN → ∞. Assume also that all Vander-
monde mixed moment expansion coefficientsKρ,ω exist. Then
the limit

Mn = limN→∞ E[trL( D1(N)VH
VD2(N)VH

V

· · · × Dn(N)VH
V)]

(5)

also exists whenL
N → c, and equals

∑

ρ∈P(n)

Kρ,ωc|ρ|−1Dρ. (6)

The proof of theorem 1 can be found in appendix A.
Although the limit ofKρ,ω,N asN → ∞ may not exist, it will
be clear from section IV that it exists when the density ofω
is continous. Theorem 1 explains how convolution with Van-
dermonde matrices can be performed, and also provides us an
extension of the concept of free convolution to Vandermonde
matrices. Note that whenD1(N) = · · · = Dn(N) = IL, we
have that

Mn = lim
N→∞

E
[

trL

(

(

V
H

V
)n
)]

,

so that our our results also include the limit moments of the
Vandermonde matrices themselves.Mn corresponds also to the
limit moments of the empirical eigenvalue distributionFN

VHV

defined by

FN
VHV

(λ) =
#{i|λi ≤ λ}

N
,

(whereλi are the (random) eigenvalues ofV
H

V), i.e.

Mn = lim
N→∞

E

[∫

λndFN (λ)

]

.

(6) will also be useful on the scaled form

cMn =
∑

ρ∈P(n)

Kρ,ω(cD)ρ. (7)

When D1(N) = D2(N) = · · · = Dn(N), we denote
their common valueD(N), and define the sequenceD =
(D1, D2, ...) with Dn = limN→∞ trL ((D(N))n). In this
caseDρ does only depend on the block cardinalities|ρj |,
so that we can group together theKρ,ω for ρ with equal
block cardinalities. If we group the blocks ofρ so that their
cardinalities are in descending order, and set

P(n)r1,r2,...,rk
= {ρ = {ρ1, ..., ρk} ∈ P(n)||ρi| = ri∀i},

wherer1 ≥ r2 ≥ · · · ≥ rk, and also write

Kr1,r2,...,rk
=

∑

ρ∈P(n)r1,r2,...,rk

Kρ,ω, (8)

then, after performing the substitutions

mn = (cM)n = c limN→∞ E
[

trL

((

D(N)VH
V
)n)]

,
dn = (cD)n = c limN→∞ trL (Dn(N)) ,

(9)

(7) can be written

mn =
∑

r1,...,rk
r1+···+rk=n

Kr1,r2,...,rk

k
∏

j=1

drj
. (10)

For the first5 moments this becomes

m1 = K1d1

m2 = K2d2 + K1,1d
2
1

m3 = K3d3 + K2,1d2d
2
1 + K1,1,1d

3
1

m4 = K4d4 + K3,1d3d1 + K2,2d
2
2 + K2,1,1d2d

2
1+

K1,1,1,1d
4
1

m5 = K5d5 + K4,1d4d1 + +K3,2d3d2+
K3,1,1d3d

2
1 + K2,2,1d

2
2d1 + K2,1,1,1d2d

3
1+

K1,1,1,1,1d
5
1

...
...

(11)
Thus, the algorithm for computing the asymptotic mixed
moments of Vandermonde matrices with matrices independent
from them can be split in two:

• (9), which scales with the matrix aspect ratioc, and
• (11), which performs computations independent of the

matrix aspect ratioc.

Similar splitting of the algorithm for computing the asymptotic
mixed moments of Wishart matrices and matrices independent
from them was derived in [19].

Alternatively, (11) gives us means of performing deconvo-
lution. Indeed, suppose that one knows all the moments of
DV

H
V, i.e. themk, and would like to infer on the moments

of D, i.e. thedk. By solving recursively the equations (11),
one is able to retrieve thedi: For example,

d1 =
m1

K1

d2 =
m2 − K1,1

(

m1

K1

)2

K2
,

and so on. Although the matricesDi(N) are assumed to
be determinstic matrices throughout the paper, all formulas
extend naturally to the case whenDi(N) are random matrices
independent fromV. The only difference when theDi(N) are
random is that certain quantities are replaced with fluctuations.
D1D2 should for instance be replaced with

lim
N→∞

E
[

trL (D(N)) trL

(

(D(N))
2
)]

whenDi(N) is random.
In the next sections, we will derive and analyze the Vander-

monde mixed moment expansion coefficientsKρ,ω for various
cases, which is essential for the the algorithm (11).

III. U NIFORMLY DISTRIBUTED ω

We will let u denote the uniform distribution on[0, 2π). We
can write

Kρ,u,N = 1
(2π)|ρ|Nn+1−|ρ|×
∫

(0,2π)|ρ|

∏n
k=1

1−e
jN(xb(k−1)−xb(k))

1−e
j(xb(k−1)−xb(k))

dx1 · · · dx|ρ|,

(12)
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where integration is w.r.t. Lebesgue measure. In this case
one particular class of partitions will be useful to us, the
noncrossing partitions:

Definition 3: A partition is said to be noncrossing if, when-
everi < j < k < l, i andk are in the same block, and alsoj
and l are in the same block, then alli, j, k, l are in the same
block. The set of noncrossing partitions is denoted byNC(n).

The noncrossing partitions have already shown their useful-
ness in expressing the freeness relation in a particularly nice
way [21]. Their appearance here is somewhat different than in
the case for the relation to freeness:

Theorem 2:Assume that the{Dr(N)}1≤r≤n have a joint
limit distribution asN → ∞, Then the Vandermonde mixed
moment expansion coefficient

Kρ,u = lim
N→∞

Kρ,u,N

exists for allρ. Moreover,0 < Kρ,u ≤ 1, theKρ,u are rational
numbers for allρ, andKρ,u = 1 if and only if ρ is noncrossing.

The proof of theorem 2 can be found in appendix B. Due
to theorem 1, theorem 2 guarantees that the asymptotic mixed
moments (5) exist whenLN → c for uniform phase distribution,
and are given by (6). The valuesKρ,u are in general hard to
compute for higher orderρ with crossings. We have performed
some of these computations. It turns out that the following
computations suffice to obtain the7 first moments.

Lemma 1:The following holds:

K{{1,3},{2,4}},u =
2

3

K{{1,4},{2,5},{3,6}},u =
1

2

K{{1,4},{2,6},{3,5}},u =
1

2

K{{1,3,5},{2,4,6}},u =
11

20

K{{1,5},{3,7},{2,4,6}},u =
9

20

K{{1,6},{2,4},{3,5,7}},u =
9

20
.

The proof of lemma 1 is given in appendix C. Combining
theorem 2 and lemma 1 into this form, we will prove the
following:

Theorem 3:AssumeD1(N) = D2(N) = · · · = Dn(N).

Whenω = u, (11) takes the form

m1 = d1

m2 = d2 + d2
1

m3 = d3 + 3d2d1 + d3
1

m4 = d4 + 4d3d1 +
8

3
d2
2 + 6d2d

2
1 + d4

1

m5 = d5 + 5d4d1 +
25

3
d3d2 + 10d3d

2
1 +

40

3
d2
2d1 + 10d2d

3
1 + d5

1

m6 = d6 + 6d5d1 + 12d4d2 + 15d4d
2
1 +

151

20
d2
3 + 50d3d2d1 + 20d3d

3
1 +

11d3
2 + 40d2

2d
2
1 + 15d2d

4
1 + d6

1

m7 = d7 + 7d6d1 +
49

3
d5d2 + 21d5d

2
1 +

497

20
d4d3 + 84d4d2d1 + 35d4d

3
1 +

1057

20
d2
3d1 +

693

10
d3d

2
2 + 175d3d2d

2
1 +

35d3d
4
1 + 77d3

2d1 +
280

3
d2
2d

3
1 +

21d2d
5
1 + d7

1.

Theorem 2 and lemma 1 reduces the proof of theorem 3 to a
simple count of partitions. Theorem 3 is proved in appendix D.
To compute higher momentsmk, Kρ,u must be computed
for partitions of higher order. The computations performed
in appendix C and D should convince the reader that this can
be done, but is very tedious.

Following the proof of theorem 2, we can also obtain for-
mulas for the fluctuations of mixed moments of Vandermonde
matrices. We will not go into details on this, but only state the
following equations without proof:

limN→∞ E
[

trL

((

D(N)VH
V
)n) (

trL

(

D(N)VH
V
))m]

= E
[

trL

((

D(N)VH
V
)n)]

Dm
1

c limN→∞ E
[

Tr
(

(

D(N)VH
V
)2
)

trL

(

(

D(N)VH
V
)2
)]

= 4
3d2

2 + 4d2d
2
1 + 4d3d1 + d4.

(13)

Following the proof of theorem 2 again, we can also
obtain exact expressions for moments of lower order random
Vandermonde matrices with uniformly distributed phases, not
only the limit. We state these only for the first four moments.

Theorem 4:AssumeD1(N) = D2(N) = · · · = Dn(N).
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Whenω = u, (11) takes the exact form

m1 = d1

m2 =
(

1 − N−1
)

d2 + d2
1

m3 =
(

1 − 3N−1 + 2N−2
)

d3

+3
(

1 − N−1
)

d1d2 + d3
1

m4 =

(

1 − 20

3
N−1 + 11N−2 − 37

6
N−3

)

d4

+
(

4 − 12N−1 + 8N−2
)

d3d1

+

(

8

3
− 5N−1 +

19

6
N−2

)

d2
2

+6
(

1 − N−1
)

d2d
2
1 + d4

1.

Theorem 4 is proved in appendix E. Exact formulas for the
higher order moments also exist, but they become increasingly
complex, as entries for higher order termsL−k also enter the
picture. These formulas are also harder to prove for higher
order moments. In many cases, exact expressions are not
what we need: First order approximations (i.e. expressions
where only theL−1-terms are included) can suffice for many
purposes. In appendix E, we explain how the simpler case of
these first order approximations can be computed. It seems
much harder to prove a similar result when the phases are not
uniformly distributed.

IV. ω WITH CONTINOUS DENSITY

The following result tells us that the limitKρ,ω exists for
manyω, and also gives a useful expression for them in terms
of the density ofω, andKρ,u.

Theorem 5:The Vandermonde mixed moment expansion
coefficients Kρ,ω = limN→∞ Kρ,ω,N exist whenever the
density pω of ω is continous on[0, 2π). If this is fulfilled,
then

Kρ,ω = Kρ,u(2π)|ρ|−1

(∫ 2π

0

pω(x)|ρ|dx

)

. (14)

The proof is given in appendix F.
Besides providing us with a deconvolution method for find-

ing the mixed moments of the{Dr(N)}1≤r≤n, theorem 5 also
provides us with a way of inspecting the phase distributionω,
by first finding the moments of the density, i.e.

∫ 2π

0
pω(x)kdx.

However, note that we can not expect to find the density ofω
itself, only the density of the density ofω. To see this, define

Qω(x) = µ ({x|pω ≤ x})
for 0 ≤ x ≤ ∞, whereµ is uniform measure on the unit
circle. Write alsoqω(x) as the corresponding density, so that
qω(x) is the density of the density ofω. Then it is clear that

∫ 2π

0

pω(x)|ρ|dx =

∫ ∞

0

xnqω(x)dx. (15)

These quantities correspond to the moments of the measure
with densityqω , which can help us obtain the densityqω itself
(i.e. the density of the density ofω). However, the densitypω

can not be obtained, since we see that any reorganization of
its values which do not change its densityqω will provide the
same values in (15).

Note also that theorem 5 gives a very special role to the
uniform phase distribution, in the sense that it minimizes the
moments of the Vandermonde matricesV

H
V. This follows

from (14), since
∫ 2π

0

pu(x)|ρ|dx ≤
∫ 2π

0

pω(x)|ρ|dx

for any densitypω. In [22], several examples are provided
where the integrals (14) are computed.

V. ω WITH DENSITY SINGULARITIES

The asymptotics of Vandermonde matrices are different
when the density ofω has singularities, and depends on
the density growth rates near the singular points. It will be
clear from these results that one can not perform deconvo-
lution for suchω to obtain the higher order moments of the
{Dr(N)}1≤r≤n (only their first moment can be obtained).
The asymptotics are first described forω with atomic density
singularities, as this is the simplest case to prove. After this,
densities with polynomial growth rates near the singularities
are addressed.

Theorem 6:Assume thatpω =
∑r

i=1 piδαi
is atomic

(whereδαi
(x) is dirac measure (point mass) atαi), and denote

by p(n) =
∑r

i=1 pn
i the corresponding moments. Then

lim
N→∞

E[Tr( D1(N)
1

N
V

H
VD2(N)

1

N
V

H
V

· · · × Dn(N)
1

N
V

H
V)]

= cn−1p(n) lim
N→∞

n
∏

i=1

trL (Di(N)) .

Note here that the non-normalized trace is used.
The proof can be found in appendix G. In particular,

theorem 6 states that the asymptotic moments of1
N V

H
V

coincide with the moments ofpω, up to the scaling factor
cn−1. The theorem is of great importance for the estimation
of the anglesαi and the point massespi in our Vandermonde
deconvolution framework. In blind seismic and telecommu-
nication applications, one would like to detect the angles
αi through deconvolution. Unfortunately, theorem 6 tells us
that this is impossible, since thep(n) (which are moments
which we can find through deconvolution), do not depend on
them (this parallels theorem 5, since also there we could not
recover the densitypω itself). Having found thep(n) through
deconvolution, one can, however, find the point massespi, by
solving for p1, p2, ... in the Vandermonde equation







p1 p2 · · · pr

p2
1 p2

2 · · · p2
r

...
...

...
...













1
1
...






=







p(1)

p(2)

...






,

even if the number of atoms may be unknown.
The case when the density has non-atomic singularities is

more complicated. We provide only the following result, which
addresses the case when the density has polynomic growth rate
near the singularities.

Theorem 7:Assume that

lim
x→αi

|x − αi|spω(x) = pi for some0 < s < 1
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for a set of pointsα1, ..., αr, with pω continous forω 6=
α1, ..., αr. Then

lim
N→∞

E[Tr( D1(N)
1

Ns
V

H
VD2(N)

1

Ns
V

H
V

· · · × Dn(N)
1

Ns
V

H
V)]

= cn−1q(n) lim
N→∞

n
∏

i=1

trL (Di(N))

where

q(n) =
(

2Γ(1 − s) cos
(

(1−s)π
2

))n

p(n)×
∫

[0,1]n

∏n
k=1

1
|xk−1−xk|1−s ,

(16)

andp(n) =
∑

i pn
i . Note here that the non-normalized trace is

used.
The proof can be found in appendix H. Also in this case

it is only the point massespi which can be found through
deconvolution, not the singularity locationsαi. Note that the
integral in (16) can also be written as anm-fold convolution.
Similarly, the definition ofKρ,ω,N given by (4) can also be
viewed as a2-fold convolution whenρ has two blocks, and
as a3-fold convolution whenρ has three blocks (but not for
ρ with more than3 blocks).

A very useful application of theorem 7 is the case when
ω = sin(x), with x uniformly distributed. The density will
then be of the formd arcsin(ω)

dω = 1√
1−ω2

, which goes to infinity

nearω = ±1 (which correspond tox = ±π/2) at ratex−1/2.
Theorem 7 thus applies withs = 1/2. For this case, however,
the ”edges” at±π/2 are never reached in practice [22], i.e. we
can restrictω in our analysis to clusters of intervalsUi[αi, βi]
not containing±1, for which the results of section IV suffice.
In this way, we also avoid the computation of the cumbersome
integral (16).

VI. GENERALIZED VANDERMONDE MATRICES

Until now, we have been considering Vandermonde matrices
where the columns have a uniform distribution of powers. In
this section we will look at matrices where this is not the case.
Such matrices are called generalized Vandermonde matrices,
and are of the form

V =
1√
N











e−jf(1)ω1 · · · e−jf(1)ωL

e−jf(2)ω1 · · · e−jf(2)ωL

...
. . .

...
e−jf(N)ω1 · · · e−jf(N)ωL











, (17)

where f is a discrete function taking values in{0, ..., N −
1}, and whose empirical distribution function converges to a
function Pf , i.e.

lim
N→∞

|{k|f(k) ≤ Nx}|
N

= Pf (x)

for 0 ≤ x ≤ 1. We will denote bypf the density ofPf . We
will also consider a second type of generalized Vandermonde

matrices, wheref in (17) is replaced by a random variableλ
taking values in[0, N) (uniformly distributed or not), i.e.

V =
1√
N











e−jλ1ω1 · · · e−jλ1ωL

e−jλ2ω1 · · · e−jλ2ωL

...
. . .

...
e−jλN ω1 · · · e−jλN ωL











, (18)

with the λi mutually independent, and also independent from
the ωj . The integralsKρ,ω and Kρ,ω,N can be defined as in
(4) here also. They will, however, additionally depend onf or
λ, so they will be denoted byKρ,ω,f , Kρ,ω,f,N , Kρ,ω,λ, and
Kρ,ω,λ,N .

We first look at the case whenω is uniformly distributed.
We explain how to compute the limit distributions based on
the results for non-generalized Vandermonde matrices. The
equations (36) of appendix B are now replaced by

∑

k∈ρj

f(ik−1) =
∑

k∈ρj

f(ik). (19)

Since the distribution off converges to a probability measure
with densitypf , we can prove the following:

Theorem 8:The Vandermonde mixed moment expansion
coefficientsKρ,u,f can be computed by evaluating integrals
over the same volumes as those in the proof of lemma 1 in
appendix C, with additional insertions of the densitypf in the
integrands. The same applies forK(ρ, u, λ).

Proof: We only explain how the proof of this goes for
certainρ, in particular whenρ is noncrossing. The equations
(37) are the same also for generalized Vandermonde matrices
with uniformly distributed phases, with the difference that the
variablesx1, ..., xρ now all have the densitypf . When ρ is
noncrossingKρ,u,f becomes

n+1−|ρ|
∏

i=1

∫ 1

0

pf (x)|K(ρ)i|dx, (20)

where we have used the observation from appendix B that the
free variables in the equation system (37) are given by the
block structure in the Kreweras complementK(ρ) [21]. In
(20) we have also used that|K(ρ)| = n + 1 − |ρ|, and have
denoted the blocks ofK(ρ) by K(ρ)i.

As another example,K{{1,3},{2,4}},u,f becomes the sum of
∫ 1

0

∫ 1−x1

0

∫ x1+x3

0
pf (x1)pf (x2)pf (x3)pf (x1 + x3 − x2)dx2dx3dx1

(21)
and
∫ 1

0

∫ 1

1−x1

∫ 1

x1+x3−1

pf (x1)pf (x2)pf (x3)pf (x1 + x3 − x2)dx2dx3dx1,
(22)

according to the integrals computed in appendix C. The other
Kρ,u,f are computed by inserting densities in the integrand
similarly: For eachρ we compute the reduced row echelon
form of the equation system (37), and insert the dependence
equations from the reduced form (such asx4 = x1 + x3 − x2

in the above) into the integrand variables as above.
That the same result applies when matrices of the form

(18) is used, is apparent from the law of large numbers.
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These ”generalized” integrals are easily computed based on
the evaluation of the integrals in appendix C, for cases when
pf is a polynomial.

Similar reasoning applies whenω has a continous density:
Theorem 5 can be used in this case also, with the change that
the integrals forKρ,u are replaced with integrals with addi-
tional insertions of the densitypω, as explained in theorem 5.

We will not consider generalized Vandermonde matrices
with density singularities.

VII. T HE JOINT DISTRIBUTION OF INDEPENDENT

VANDERMONDE MATRICES

In the case when many independent random Vandermonde
matrices are involved, the following holds:

Theorem 9:Assume that the{Dr(N)}1≤r≤n have a joint
limit distribution asN → ∞. Assume also thatV1,V2, ...
are independent Vandermonde matrices with the same phase
distribution ω, and that the density ofω is continous. Then
the limit

limN→∞ E[trL( D1(N)VH
i1 Vi2D2(N)VH

i2Vi3

· · · × Dn(N)VH
in

Vi1)]

also exists whenL
N → c, and equals

∑

ρ≤σ∈P(n)

Kρ,ωc|ρ|Dρ, (23)

whereσ is the partition wherek andj are in the same block
if and only if ik = ij .

For the proof of theorem 9 and the next results, we define
σj to be the blocks ofσ, i.e.

σj = {k|ik = j}.
Proof: Note that theorem 5 guarantees that the limitKρ,ω =

limN→∞ Kρ,ω,N exists. The partitionρ simply is a grouping
of random variables into independent groups. It is therefore
impossible for a block inρ to contain elements from bothσ1

andσ2, so that any block is contained in eitherσ1 or σ2. As
a consequence,ρ ≤ σ.

Corollary 1: The first three mixed moments

Mn = lim
N→∞

E
[

trL

(

(

V
H
1 V2V

H
2 V1

)n
)]

of independent Vandermonde matricesV1,V2 are given by

M1 = I2

M2 =
2

3
I2 + 2I3 + I4

M3 =
11

20
I2 + 4I3 + 9I4 + 6I5 + I6,

where

Ik = (2π)|ρ|−1

(∫ 2π

0

pω(x)|ρ|dx

)

.

In particular, when the phases are uniformly distributed, the
first three mixed moments are given by

M1 = 1

M2 =
11

3

M3 =
411

20

Proof: This follows in the same way as theorem 3 is proved
from lemma 1, by only consideringρ which are less thanσ,
and also by using theorem 5.σ are for the listed moments
{{1}, {2}}, {{1, 3}, {2, 4}}, and{{1, 3, 5}, {2, 4, 6}}, respec-
tively.

The results here can also be extended to the case with
independent Vandermonde matrices with different phase dis-
tributions:

Theorem 10:Assume that{Vi}1≤i≤s are independent Van-
dermonde matrices, whereVi has continous phase distribution
ωi. Denote bypωi

the density ofωi. Then equation (23) still
holds, withKρ,ω replaced by

Kρ,u(2π)|ρ|−1

∫ 2π

0

s
∏

i=1

pωi
(x)|ρi|dx,

whereρi is the partition ofσi consisting of the blocks ofρ
contained inσi,

The proof is omitted, as it is a straightforward extension of
the proofs of theorems 5 and 9. Until now, we have not treated
mixed moments of the form

D1(N)Vi2V
H
i2 D2(N)Vi3V

H
i3 · · · × Dn(N)Vi1V

H
i1 ,

which are the same as the mixed moments of theorem 9
except for the position of theDi(N). We will not go into
depths on this, but only remark that this case can be treated
in the same vein as generalized Vandermonde matrices by
replacing the densitypf (or pλ in case of continous generalized
Vandermonde matrices) with functionspDi

(x) defined by
pDi

(x) = Di(N)(⌊Lx⌋, ⌊Lx⌋) for 0 ≤ x ≤ 1. This also
covers the case of mixed moments of independent, generalized
Vandermonde matrices (and, in fact, there are no restrictions
on the horizontal and vertical phase densitiespωi

andpλj
for

each matrix. They may all be different). The proof for this is
straightforward.

VIII. D ISCUSSION

We have already explained that one can perform deconvolu-
tion with Vandermonde matrices in a similar way to how one
can perform deconvolution for Gaussian matrices. We have,
however, also seen that there are many differences.

A. Convergence rates

In [15], almost sure convergence of Gaussian matrices was
shown by proving exact formulas for the distribution of lower
order Gaussian matrices. These deviated from their limits by
terms of the form1/L2. In theorem 4, we see that terms of
the form 1/L are involved, which indicates that we can not
hope for almost sure convergence of Vandermonde matrices.
There is no reason why Vandermonde matrices should have the
almost sure convergence property, due to their very different
degree of randomness when compared to Gaussian matrices.
Figures 1, 2 show the speed of convergence of the moments
of Vandermonde matrices (with uniformly distributed phases)
towards the asymptotic moments as the matrix dimensions
grow, and as the number of samples grow. The differences
between the asymptotic moments and the exact moments are
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MSE between exact and asymptotic moments
MSE between estimated and exact moments

Fig. 1. MSE of the first4 estimated moments from the exact moments for
80 samples for varying matrix sizes, withN = L. Matrices are on the form
VHV with V a Vandermonde matrix with uniformly distributed phases. The
MSE of the first4 exact moments from the asymptotic moments is also shown.

also shown. To be more precise, the MSE of figures 1 and 2
is computed as follows:

1) K samplesVi are independently generated using (1).
2) The 4 first sample momentŝmji = 1

L trn

(

(

V
H
i Vi

)j
)

(1 ≤ j ≤ 4) are computed from the samples.
3) The4 first estimated momentŝMj are computed as the

mean of the sample moments, i.e.M̂j = 1
K

∑K
i=1 m̂ji.

4) The 4 first exact momentsEj are computed using
theorem 4.

5) The4 first asymptotic momentsAj are computed using
theorem 3.

6) The mean squared error (MSE) of the first4 esti-
mated moments from the exact moments is computed

as
∑4

j=1

(

M̂j − Ej

)2

.
7) The MSE of the first4 exact moments from the asymp-

totic moments is computed as
∑4

j=1 (Ej − Aj)
2.

Figures 1 and 2 are in sharp contrast with Gaussian matrices,
as shown in figure 3. First of all, it is seen that the asymptotic
moments can be used just as well instead of the exact moments
(for which expressions can be found in [23]), due to the
O(1/N2) convergence of the moments. Secondly, it is seen
that only5 samples were needed to get a reliable estimate for
the moments.

B. Inequalities between moments of Vandermonde matrices
and moments of known distributions

We will state an inequality involving the moments of Van-
dermonde matrices, and the moments of known distributions
from probability theory. The classical Poisson distribution with
rateλ and jump sizeα is defined as the limit of

((

1 − λ

n

)

δ0 +
λ

n
δα

)∗N
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MSE between exact and asymptotic moments
MSE between estimated and exact moments

Fig. 2. MSE of the first4 moments from the actual moments for320 samples
for varying matrix sizes, withN = L. Matrices are on the formVHV with
V a Vandermonde matrix with uniformly distributed phases. The MSE of the
moments and the asymptotic moments is also shown.
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Fig. 3. MSE of the first4 moments from the actual moments for5 samples
for varying matrix sizes, withN = L. Matrices are on the form1

N
XXH

with X a complex standard Gaussian matrix. The MSE of the moments and
the asymptotic moments is also shown.

as n → ∞ [21]. For our analysis, we will only need the
classical Poisson distribution with ratec and jump size1. We
will denote this quantity byνc. The free Poisson distribution
with rateλ and jump sizeα is defined similarly as the limit
of

((

1 − λ

n

)

δ0 +
λ

n
δα

)⊞N

as n → ∞, where⊞ is the free probability counterpart of
classical additive convolution [21], [16]. For our analysis, we
will only need the free Poisson distribution with rate1c and
jump size c. We will denote this quantity byµc. µc is the
same as the better known Marc̆henko Pastur law, i.e. it has
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the density [16]

fµc(x) = (1 − 1

c
)+δ0(x) +

√

(x − a)+(b − x)+

2πcx
, (24)

where(z)+ = max(0, z), a = (1−√
c)2, b = (1+

√
c)2. Since

the classical (free) cumulants of the classical (free) Poisson
distribution areλαn [21], we see that the (classical) cumulants
of νc are c, c, c, c, ..., and that the (free) cumulants ofµc are
1, c, c2, c3, .... In other words, ifa1 has the distributionµc,
then

φ(an
1 ) =

∑

ρ∈NC(n) cn−|ρ| =
∑

ρ∈NC(n) c|K(ρ)|−1

=
∑

ρ∈NC(n) c|ρ|−1.
(25)

Here we have used the Kreweras complementation map, which
is an order-reversing isomorphism ofNC(n) which satisfies
|ρ| + |K(ρ)| = n + 1 (here φ is the expectation in a non-
commutative probability space). Also, ifa2 has the distribution
νc, then

E(an
2 ) =

∑

ρ∈P(n)

c|ρ|. (26)

We immediately recognize thec|ρ|−1-entry of theorem 1 in
(25) and (26) (except for an additional power ofc in (26)).
Combining theorem 2 withD1(N) = · · · = Dn(N) = IN ,
(25), and (26), we thus get the following corollary to theo-
rem 2:

Corollary 2: Assume thatV has uniformly distributed
phases. Then the limit moment

Mn = lim
N→∞

E
[

trL

(

(

V
H
V
)n
)]

satsifies the inequality

φ(an
1 ) ≤ Mn ≤ 1

c
E(an

2 ),

wherea1 has the distributionµc of the Marc̆henko Pastur law,
anda2 has the Poisson distributionνc. In particular, equality
occurs form = 1, 2, 3 and c = 1 (since all partitions are
noncrossing form = 1, 2, 3).

Corollary 2 thus states that the moments of Vandermonde
matrices with uniformly distributed phases are bounded above
and below by the moments of the classical and free Poisson
distributions, respectively. The different Poisson distributions
enter here because their (free and classical) cumulants re-
semble thec|ρ|−1-entry in theorem 1, where we also can
use thatKρ,u = 1 if and only if ρ is noncrossing to get a
connection with the Marc̆henko Pastur law. To see how close
the asymptotic Vandermonde moments are to these upper and
lower bounds, the following corollary to theorem 3 contains
the first moments:

Corollary 3: Whenc = 1, the limit moments

Mn = lim
N→∞

E
[

trL

(

(

V
H

V
)n
)]

,

the momentsfpn of the Marc̆henko Pastur lawµ1, and the
momentspn of the Poisson distributionν1 satisfy

fp4 = 14 ≤ M4 = 44
3 ≈ 14.67 ≤ p4 = 15

fp5 = 42 ≤ M5 = 146
3 ≈ 48.67 ≤ p5 = 52

fp6 = 132 ≤ M6 = 3571
20 ≈ 178.55 ≤ p6 = 203

fp7 = 429 ≤ M7 = 2141
3 ≈ 713.67 ≤ p7 = 877.

The first three moments coincide for the three distributions,
and are1, 2, and5, respectively.

The numbersfpn and pn are simply the number of
partitions in NC(n) and P(n), respectively. The number
of partitions in NC(n) equals the Catalan numberCn =

1
n+1

(

2n
n

)

[21], so they are easily computed. The number of
partitions ofP(n) are also known as the Bell numbersBn [21].
They can easily be computed from the recurrence relation

Bn+1 =

n
∑

k=0

Bk

(

n

k

)

.

It is not known whether the limiting distribution of our
Vandermonde matrices has compact support. Corollary 3 does
not help us in this respect, since the Marc̆henko Pastur law
has compact support, and the classical Poisson distribution
has not. In figure 4, the mean eigenvalue distribution of640
samples of a1600×1600 Vandermonde matrix with uniformly
distributed phases is shown. While the Poisson distribution
ν1 is purely atomic and has masses at0, 1, 2, and 3 which
are e−1, e−1, e−1/2, and e−1/6 (the atoms consist of all
integer multiples), the Vandermonde histogram shows a more
continous eigenvalue ditribution, with the peaks which the
Poisson distribution has at integer multiples clearly visible
here as well (the peaks are not as sharp though). We remark
that the support ofVH

V goes all the way up toN , but lies
within [0, N ]. It is also unknown whether the peaks at integer
multiples in the Vandermonde histogram grow to infinity as
we let N → ∞. From the histogram, only the peak at0
seems to be of atomic nature. In figures 5 and 6, the same
histogram is shown for1600 × 1200 (i.e. c = 0.75) and
1600×800 (i.e. c = 0.5) Vandermonde matrices, respectively.
It should come as no surprise that the effect of decreasingc is
stretching the eigenvalue density vertically, and compressing it
horizontally. just as the case for the different Marc̆henkoPastur
laws. Eigenvalue histograms for Gaussian matrices which in
the limit give the corresponding (in the sense of corollary 2)
Marc̆henko Pastur laws for figures 5 (i.e.µ0.75) and 6 (i.e.
µ0.5), are shown in figures 7 and 8.

C. Deconvolution

Deconvolution with Vandermonde matrices (as stated in
(6) in theorem 1) differs from the Gaussian deconvolution
counterpart [21] in the sense that there is no multiplicative [21]
structure involved, sinceKρ,ω is not multiplicative inρ. The
Gaussian equivalent of theorem 3 (i.e.V

H
V replaced with

1
N XX

H , with X an L × N complex, standard, Gaussian
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Fig. 4. Histogram of the mean eigenvalue distribution of640 samples
of V

H
V, with V a 1600 × 1600 Vandermonde matrix with uniformly

distributed phases.
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Fig. 5. Histogram of the mean eigenvalue distribution of640 samples
of V

H
V, with V a 1600 × 1200 Vandermonde matrix with uniformly

distributed phases.

matrix) is

m1 = d1

m2 = d2 + d2
1

m3 = d3 + 3d2d1 + d3
1

m4 = d4 + 4d3d1 + 3d2
2 + 6d2d

2
1 + d4

1

m5 = d5 + 5d4d1 + 5d3d2 + 10d3d
2
1+

10d2
2d1 + 10d2d

3
1 + d5

1

m6 = d6 + 6d5d1 + 6d4d2 + 15d4d
2
1+

3d2
3 + 30d3d2d1 + 20d3d

3
1+

5d3
2 + 10d2

2d
2
1 + 15d2d

4
1 + d6

1

m7 = d7 + 7d6d1 + 7d5d2 + 21d5d
2
1+

7d4d3 + 42d4d2d1 + 35d4d
3
1+

21d2
3d1 + 21d3d

2
2 + 105d3d2d

2
1+

35d3d
4
1 + 35d3

2d1 + 70d2
2d

3
1+

21d2d
5
1 + d7

1,

(27)
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Fig. 6. Histogram of the mean eigenvalue distribution of640 samples of
V

H
V, with V a 1600×800 Vandermonde matrix with uniformly distributed

phases.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7. Histogram of the mean eigenvalue distribution of20 samples of
1

N
XX

H , with X an L × N = 1200 × 1600 complex, standard, Gaussian
matrix.

(where themi and thedi are computed as in (9) by scaling
the respective moments byc). This follows immediately from
asymptotic freeness, and from the fact that1

N XX
H converges

to the Marc̆henko Pastur lawµc. In particular, when all
Di(N) = IL and c = 1, we obtain the limit moments:
1,2,5,14,42,132,429, which also were listed in corollary 3. One
can also write down a Gaussian equivalent to the fluctuations
of Vandermonde matrices (13) (fluctuations of Gaussian ma-
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Fig. 8. Histogram of the mean eigenvalue distribution of20 samples of
1

N
XXH , with X an L × N = 800 × 1600 complex, standard, Gaussian

matrix.

trices are handled more thoroughly in [24]). These are

E
[

(

trn

(

D(N) 1
N XX

H
))2
]

= (trn(D(N))2 + 1
nN trn(D(N)2)

E
[(

trn

(

D(N) 1
N XX

H
))n]

= (trn(D(N))n + O(N−2)

E
[

trn

(

D(N) 1
N XX

H
)

trn

(

(

D(N) 1
N XX

H
)2
)]

= trn(D(N))trn(D(N)2) + O(N−2).

(28)

These equations can be proved using the same combinatorical
methods as in [23]. Only the first equation is here stated as
an exact expression. The second and third equations also have
exact counterparts, but their computations are more involved.
Similarly, one can write down a Gaussian equivalent to theo-
rem 4 for the exact moments. For the first three moments (the
fourth moment is dropped, since this is more involved), these
are

m1 = d1

m2 = d2 + d2
1

m3 =
(

1 + N−2
)

d3 + 3d1d2 + d3
1.

This follows from a careful count of all possibilities afterthe
matrices have been multiplied together (for this, see also [23],
where one can see that the restriction that the matricesDi(N)
are diagonal can be dropped in the Gaussian case). It is seen,
contrary to theorem 4 for Vandermonde matrices, that the
second exact moment equals the second asymptotic moment
from (27), and also that the convergence is faster (i.e.O(n−2))
for the third moment (this will also be the case for higher
moments).

The two types of (de)convolution also differ in how they
can be computed in practice. In [19], an algorithm for free
convolution with the Marc̆henko Pastur law was sketched. A
similar algorithm may not exist for Vandermonde convolu-
tion. However, Vandermonde convolution can be subject to
numerical approximation: To see this, note first that theorem 5

splits the numerics into two parts: The approximation of the
integrals

∫

pω(x)|ρ|dx, and the approximation of theKρ,u. A
strategy for obtaining the latter quantities could be to randomly
generate many numbers between0 and 1 and estimate the
volume as the ratio of the solutions which satisfy (37) in
appendix B. Implementations of the various Vandermonde
convolution variants given in this paper can be found in [25].

In practice, one often has a random matrix model where
independent Gaussian and Vandermonde matrices are both
present. In such cases, it should be possible to combine the
individual results for both of them. In [22], examples on how
this can be done are presented.

IX. CONCLUSION AND FURTHER DIRECTIONS

We have shown how asymptotic moments of random Van-
dermonde matrices can be computed analytically, and treated
many different cases. Vandermonde matrices with uniformly
distributed phases proved to be the easiest case and was given
separate treatment, and it was shown how the case with more
general phases could be expressed in terms of the case of
uniformly distributed phases. The case where the phase distri-
bution has singularities was also given separate treatment, as
this case displayed different asymptotic behaviour. Also mixed
moments of independent Vandermonde matrices were com-
puted, as well as the moments of generalized Vandermonde
matrices. In addition to the general asymptotic expressions
stated, exact expressions for the first moments of Vandermonde
matrices with uniformly distributed phases were also stated.

Throughout the paper, we assumed that only diagonal
matrices were involved in mixed moments of Vandermonde
matrices. The case of non-diagonal matrices is harder to
address, and should be addressed in future research. The
analysis of the support of the eigenvalues is also of importance,
as well as the behavior of the maximum and minimum
eigenvalue. The methods presented in this paper can not be
used directly to obtain explicit expressions for the asymptotic
mean eigenvalue distribution, so this is also a case for future
research. A way of attacking this problem could be to develop
for Vandermonde matrices analytic counterparts to what one
has in free pobability (such as theR- and S-transform and
their connection with the Stieltjes transform).

Finally, another case for future research is the asymptotic
behaviour of Vandermonde matrices when the matrix entries
lie outside the unit circle. The asymptotics are very different
in this case. The choice of Vandermonde matrix entries on
the unit circle was applied for this paper since the asymptotic
behaviour is more easily addressed in this case.

APPENDIX A
THE PROOF OF THEOREM1

We can write

E
[

trL

(

D1(N)VH
VD2(N)VH

V · · ·Dn(N)VH
V
)]

(29)
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as

L−1
∑

i1,...,in

j1,...,jn

E( D1(N)(j1, j1)V
H(j1, i2)V(i2, j2)

D2(N)(j2, j2)V
H(j2, i3)V(i3, j3)

...
D2(N)(jn, jn)VH(jn, i1)V(i1, j1))

(30)
The (j1, ..., jn) give rise to a partitionρ of {1, ..., n}, where
each blockρj consists of equal values, i.e.

ρj = {k|jk = j}.

Write

ρj = {ρj1, ρj2, ..., ρj|ρj |}.

When (j1, ..., jn) give rise toρ, we see that since

jρj1 = jρj2 = · · · = jρj|ρj |
,

we also have that

ωjρj1
= ωjρj2

= · · · = ωjρj|ρj |
,

and we will denote their common value byωρj
as in defini-

tion 2. With this in mind, it is straightforward to verify that
(30) can be written as

∑

ρ∈P(n)
∑

(i1,...,in)
∑

(j1 ,...,jn)

giving rise toρ

N−nL−1

∏|ρ|
k=1 E

(

e
j

“

P

k∈ρj
ik−1−

P

k∈ρj
ik

”

ωρk

)

D1(N)(j1, j1)D2(N)(j2, j2)
· · · × Dn(N)(jn, jn)

(31)

We will in the following switch between the form (31) and
the form

∑

ρ∈P(n)
∑

(j1,...,jn)

giving rise toρ
∑

(i1,...,in)

N |ρ|−n−1c|ρ|−1L−|ρ|
∏n

k=1 E
(

ej(ωb(k−1)−ωb(k))ik
)

D1(N)(j1, j1)D2(N)(j2, j2)
· · · × Dn(N)(jn, jn),

(32)

where we also have reorganized the powers ofN and L in
(31), and changed the order of summation (i.e. summed over
the differenti1, ..., in first). (32) will also be written

∑

ρ∈P(n)
∑

(j1,...,jn)

giving rise toρ

c|ρ|−1L−|ρ|Kρ,ω,N

D1(N)(j1, j1)D2(N)(j2, j2)
· · · × Dn(N)(jn, jn),

(33)

whereKρ,ω,N is defined in theorem 1. This form is obtained
from (32) by using the geometric sum formula.

The notation for a joint limit distribution simplifies (32).
Indeed, add to (32) for eachρ the terms

∑

ρ′∈P(n),ρ′>ρ
∑

(j1,...,jn)

giving rise toρ′

c|ρ|−1L−|ρ|Kρ,ω,N

D1(N)(j1, j1)D2(N)(j2, j2)
· · · × Dn(N)(jn, jn)

(34)

These go to0 asN → ∞, since they are bounded by

c|ρ|−1L−|ρ|Kρ,ω,NL|ρ′| = Kρ,ω,Nc|ρ|−1L|ρ′|−|ρ| = O(L−1).

After this addition, the limit of (33) can be written
∑

ρ∈P(n)

c|ρ|−1Kρ,ωDρ, (35)

which is what we had to show.

APPENDIX B
THE PROOF OF THEOREM2

Note that

E

(

e
j

“

P

k∈ρj
ik−1−

P

k∈ρj
ik

”

ωρj

)

= 0

when
∑

k∈ρj

ik−1 6=
∑

k∈ρj

ik,

and1 if
∑

k∈ρj

ik−1 =
∑

k∈ρj

ik. (36)

We thus define

Sρ,N =

{i1, ..., in}|
∑

k∈ρj

ik−1 =
∑

k∈ρj

ik∀j ∈ {1, ..., |ρ|},

and |Sρ,N | to be the cardinality ofSρ,N . With this definition
in place, it is obvious that

Kρ,u = lim
N→∞

Kρ,u,N = lim
N→∞

1

Nn+1−|ρ| |S(ρ, N)|

Finding the limit distribution thus boils down to finding|Sρ,N |,
which is equivalent to finding the number of solutions to
equations of the form (36), where the variables are integers
constrained to lie between1 and N . For lemma 1 we will
compute|Sρ,N | for certainρ of lower order. To prove theo-
rem 2, we need not compute specific|Sρ,N |.

First we explain whyKρ,u ≤ 1. It is clear that|Sρ,N | is the
number of integer solutions(i1, ..., in) between 1 andN to a
system of the formAi = 0, wherei = (i1, ..., in), andA is
|ρ|×n, with all entries being−1, 0 or 1. Also, it is clear from
(36) that each column ofA contains exactly one−1 and one
1, or contains just zeroes. Such a matrix has rank|ρ| − 1, as
can be found through elementary row reduction. Hence, there
are |ρ| − 1 pivot columns inA, so that there aren + 1 − |ρ|
free variables among(i1, ..., in) in the solution set ofAi = 0.
Therefore,|Sρ,N | ≤ Nn+1−|ρ|, which proves thatKρ,u ≤ 1.
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Also, by dividing the equations (36) byN , and lettingN
go to infinity, we see thatKρ,u can alternatively be expressed
as the volume of the solution set of

∑

k∈ρj

xk−1 =
∑

k∈ρj

xk. (37)

as a volume inRn+1−|ρ| (i.e. the volume is computed after
expressing the remaining|ρ| − 1 variables in then + 1 − |ρ|
free variables). Since1 ≤ ik ≤ N , we have that0 ≤ xk ≤ 1,
so that the volume lies within[0, 1]n+1−|ρ|, and is bounded
by a finite set of hyperplanes due to (37). The integral for
such a volume can be expressed for any givenρ (however
complex). Although we will only compute a few of these
integrals directly, it is clear that the integral computes to a
rational number greater than0 but less than1, since only
polynomials are involved in the integration procedure, and
since only0 and 1 may be constant upper or lower bounds
in the integrals. From these integrals it is also clear that the
integral is equal to1 if and only if the reduced row echelon
form of (37) only contains rows with2 nonzero entries (these
2 entries will then be1 and−1 respectively), after removing
the rows which have only0’s. This corresponds to solutions
where each constrained variable is equal to one of the free
variables. For the rest of the proof it therefore suffices to show
that such a solution set occurs if and only if the partitionρ is
noncrossing.

If ρ is noncrossing, there exists a blockρ1 (after renum-
bering the blocks if necessary) which consists of a single
interval of numbers, say{r, r + 1, ..., r + |ρ1|}. This block’s
equation in (36) is easily seen to imply thatir−1 = ir+|ρ1|.
Also, ir, ..., ir+|ρ1|−1 can be chosen arbitrarily. Therefore, this
block gives rise to|ρ1|−1 free variables. We now add together
the equation for the blockρ1, and the equation for the block
ρ2 which containsr + |ρ1| + 1 (again after renumbering the
blocks if necessary), and replaces the two rows with this sum.
Columnsr, ..., r + |ρ1| are easily seen to contain only0’s, so
that these can be removed from our equation system (since
we are just interested in counting the number of free variables
in the solution set. These removed variables gave rise to
|ρ1|−1 free variables). The new equation system corresponds
to the equation system for another noncrossing partition of
{1, ..., n − |ρ1|} (created by merging the blocksρ1 and ρ2),
with |ρ| − 1 blocks. The step where we find a block which is
an interval can now be repeated to combine two more blocks
to merge, and this process can be repeated until we remain
with 1 block with |ρ|ρ|| elements after|ρ| − 1 block merges.
It is clear that this last block gves rise to|ρ|ρ|| free variables.
If we sum up the total number of free variables we get

|ρ|ρ|| +
|ρ|−1
∑

i=1

(|ρi| − 1) = n − (|ρ| − 1) = n + 1 − |ρ|.

All in all we see that the solution set is as described as
above (i.e. each constrained variable is equal to one of the
free variables), so thatNn+1−|ρ| choices ofi1, ..., in satisfy
(36), which shows thatKρ,u = 1 whenρ is noncrossing. It is
easy to see that, whenρ has crossings, the procedure followed
above will fail, so that at least one of the constrained variables

is not equals to a free variable. But thenKρ,u < 1 for such
ρ, which proves the theorem.

We remark that it is the form (37) which will be used
in the other appendices to computeKρ,u for certain lower
orderρ. From the proof, we see that whenρ is noncrossing,
there exists a partition of{1, ..., n} into n + 1 − |ρ| blocks,
where two elements are defined to be in the same block
if and only if their corresponding variables are equal. It is
obvious from the construction above that this partition is the
Kreweras complement ofρ, denotedK(ρ) [21]. This fact is
used elsewhere in this paper.

APPENDIX C
THE PROOF FOR LEMMA1

We will in the following compute the volume of the solution
set of (37), as a volume in[0, 1]n+1−|ρ| ⊂ R

n+1−|ρ|, as
explained in the proof of theorem 2. These integrals are very
tedious to compute. The formula

r!s!

(r + s + 1)!
=

∫ 1

0

xr(1 − x)sdx

can be used to simplify some of the calculations for higher
values ofn.

A. Computation ofK{{1,3},{2,4}},u

This is equivalent to finding the volume of the solution set
of

x1 + x3 = x2 + x4

in R
3. Since this means that

x4 = x1 + x3 − x2 lies between0 and1,

we can set up the following integral bounds: Whenx1 +x3 ≤
1, we must have that0 ≤ x2 ≤ x1 + x3, so that we get the
contribution

∫ 1

0

∫ 1−x1

0

∫ x1+x3

0

dx2dx3dx1

=

∫ 1

0

(

1

2
− 1

2
x2

1

)

dx1

=

[

1

2
x1 −

1

6
x3

1

]1

0

=
1

2
− 1

6
=

1

3
.

When1 ≤ x1 + x3, we must have thatx1 + x3 − 1 ≤ x2 ≤ 1,
so that we get the contribution

∫ 1

0

∫ 1

1−x1

∫ 1

x1+x3−1

dx2dx3dx1

=

∫ 1

0

(

−1

2
(1 − x1)

2 +
1

2

)

dx1

=

[

1

6
(1 − x1)

3 +
1

2
x1

]1

0

= −1

6
+

1

2
=

1

3
.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, JANUARY 2008 14

Adding the contributions together we get2
3 , which is the stated

expression forK{{1,3},{2,4}},u.
Computation of certainKρ,u can be simplified by the

following: Let a
(m)
l (x) be the polynomial which gives the

volume in R
m−1 of the solutions set tox1 + · · · + xm = x

(constrained to0 ≤ xi ≤ 1) for l ≤ x ≤ l + 1. It is clear that
these satisfy the integral equations

a
(m+1)
l (x) =

∫ l

x−1

a
(m)
l−1(t)dt +

∫ x

l

a
(m)
l (t)dt, (38)

which can be used to compute theam
l (x) recursively. Note

first thata(1)
0 (x) = 1. For m = 2 we have

a
(2)
0 (x) =

∫ x

0

a
(1)
0 (t)dt = x

a
(2)
1 (x) =

∫ 1

x−1

a
(1)
0 (t)dt = 2 − x.

For m = 3 we have

a
(3)
0 (x) =

∫ x

0

a
(2)
0 (t)dt =

1

2
x2

a
(3)
1 (x) =

∫ 1

x−1

a
(2)
0 (t)dt +

∫ x

1

a
(2)
1 (t)dt

= 1 − 1

2
(x − 1)2 − 1

2
(2 − x)2

a
(3)
2 (x) =

∫ 2

x−1

a
(2)
1 (t)dt =

1

2
(3 − x)2.

By integrating thea(2)
0 (x), we can double-check our compu-

tation of K{{1,3},{2,4}},u above:
∫ 1

0

(a
(2)
0 )2(t)dt +

∫ 2

1

(a
(2)
1 )2(t)dt

=

[

1

3
t3
]1

0

+

[

−1

3
(2 − t)3

]2

1

=
2

3
.

B. Computation ofK{{1,3,5},{2,4,6}},u

For m = 3, integration gives
∫ 1

0

(a
(3)
0 )2(t)dt +

∫ 2

1

(a
(3)
1 )2(t)dt +

∫ 3

2

(a
(3)
2 )2(t)dt

=

[

1

20
t5
]1

0

+

[t +
1

20
(t − 1)5 − 1

20
(2 − t)5 − 1

3
(t − 1)3 +

1

3
(2 − t)3 +

1

60
(t − 1)5]21 +

[

− 1

20
(3 − t)5

]3

2

=
1

20
+ 1 +

1

20
+

1

20
− 1

3
− 1

3
+

1

60
+

1

20

=
11

20
,

which is the stated expression forK{{1,3,5},{2,4,6}},u.

C. Computation ofK{{1,4},{2,5},{3,6}},u

This is equivalent to finding the volume of the solution set
of

x1 + x4 = x2 + x5 = x3 + x6

in R
4, which is computed as

∫ 1

0

(a
(2)
0 )3(t)dt +

∫ 2

1

(a
(2)
1 )3(t)dt

=

[

1

4
t4
]1

0

+

[

−1

4
(2 − t)4

]2

1

=
1

4
+

1

4
=

1

2
,

which is the stated expression forK{{1,4},{2,5},{3,6}},u.

D. Computation ofK{{1,4},{2,6},{3,5}},u

This is equivalent to finding the volume of the solution set
of

x1 + x4 = x2 + x5

x2 + x6 = x3 + x1

in R
4. Since this means that

x5 = x1 − x2 + x4 lies between0 and1,

x6 = x1 − x2 + x3 lies between0 and1,

we can set up the following integral bounds:
For x2 ≥ x1 we must havex2 − x1 ≤ x3, x4 ≤ 1, so that

we get the contribution
∫ 1

0

∫ 1

x1

∫ 1

x2−x1

∫ 1

x2−x1

dx4dx3dx2dx1

=

∫ 1

0

∫ 1

x1

(1 − x2 + x1)
2dx2dx1

=

∫ 1

0

(−1

3
x3

1 +
1

3
)dx1

=

[

− 1

12
x4

1 +
1

3
x1

]1

0

=
1

3
− 1

12
=

1

4
.

It is clear that forx1 ≥ x2 we get the same result by symmetry,
so that the total contribution is14 + 1

4 = 1
2 , which proves the

claim.

E. Computation ofK{{1,5},{3,7},{2,4,6}},u

This is equivalent to finding the volume of the solution set
of

x1 + x5 = x2 + x6

x3 + x7 = x4 + x1

in R
5, or

x6 = x5 + x1 − x2 lies between0 and1,
x7 = x4 + x1 − x3 lies between0 and1 .

(39)
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Assume first thatx1 ≤ x2 ≤ x3. Thenx2 − x1 ≤ x5 ≤ 1
andx3 − x1 ≤ x4 ≤ 1, so that we get the contribution

∫ 1

0

∫ 1

x1

∫ 1

x2

∫ 1

x2−x1

∫ 1

x3−x1

dx4dx5dx3dx2dx1

=

∫ 1

0

∫ 1

x1

∫ 1

x2

(1 − x2 + x1)(1 − x3 + x1)dx3dx2dx1

=

∫ 1

0

∫ 1

x1

(
1

2
(1 − x2 + x1)

3

−1

2
x2

1(1 − x2 + x1))dx2dx1

=

∫ 1

0

[

−1

8
(1 − x2 + x1)

4 +
1

4
x2

1(1 − x2 + x1)
2

]1

x1

dx1

=

∫ 1

0

(
1

8
− 1

8
x4

1 +
1

4
x4

1 −
1

4
x2

1)dx1

=
1

8
− 1

40
+

1

20
− 1

12

=
15 − 3 + 6 − 10

120
=

8

120
=

1

15
.

We get the same contribution forx1 ≤ x3 ≤ x2 by symmetry.

Assume thatx3 ≤ x2 ≤ x1. Then0 ≤ x5 ≤ 1 + x2 − x1

and0 ≤ x4 ≤ 1 + x3 − x1, so that we get the contribution

∫ 1

0

∫ x1

0

∫ x2

0

∫ 1+x2−x1

0

∫ 1+x3−x1

0

dx4dx5dx3dx2dx1

=

∫ 1

0

∫ x1

0

∫ x2

0

(1 + x2 − x1)(1 + x3 − x1)dx3dx2dx1

=

∫ 1

0

∫ x1

0

(
1

2
(1 + x2 − x1)

3

−1

2
(1 + x2 − x1)(1 − x1)

2)dx2dx1

=

∫ 1

0

(
1

8
− 1

8
(1 − x1)

4

−1

4
(1 − x1)

2 +
1

4
(1 − x1)

4)dx1

=
1

8
− 1

40
− 1

12
+

1

20

=
15 − 3 − 10 + 6

120
=

8

120
=

1

15
.

We get the same contribution forx2 ≤ x3 ≤ x1 by symmetry.

Assume thatx2 ≤ x1 ≤ x3. Then0 ≤ x5 ≤ x2 − x1 + 1

andx3 − x1 ≤ x4 ≤ 1, so that we get the contribution
∫ 1

0

∫ x1

0

∫ 1

x1

∫ x2−x1+1

0

∫ 1

x3−x1

dx4dx5dx3dx2dx1

=

∫ 1

0

∫ x1

0

∫ 1

x1

(1 + x2 − x1)(1 − x3 + x1)dx3dx2dx1

=

∫ 1

0

∫ x1

0

(−1

2
x2

1(1 + x2 − x1)

+
1

2
(1 + x2 − x1))dx2dx1

=

∫ 1

0

(

−1

4
x2

1 +
1

4
x2

1(1 − x1)
2 +

1

4
− 1

4
(1 − x1)

2

)

dx1

= − 1

12
+

1

120
+

1

4
− 1

12

=
−10 + 1 + 30 − 10

120

=
11

120
.

We get the same contribution forx3 ≤ x1 ≤ x2 by symmetry.
Adding the six contributions together, we get

4

15
+

11

60
=

27

60
=

9

20
,

which proves the claim.

F. The computation ofK{{1,6},{2,4},{3,5,7}},u

This is equivalent to finding the volume of the solution set
of

x1 + x6 = x2 + x7

x2 + x4 = x3 + x5

in R
5, or

x6 = x7 + x2 − x1 lies between0 and1,

x5 = x4 + x2 − x3 lies between0 and1, .

This can be obtained from (39) by a permutation of the
variables, so the contribution fromK{{1,6},{2,4},{3,5,7}},u must
also be 9

20 , which proves the claim.

APPENDIX D
THE PROOF FOR THEOREM3

We will have use for the following result, taken from [21]:
Lemma 2:The number of noncrossing partitions inNC(n)

with r1 blocks of length1, r2 blocks of length2 and so on
(so thatr1 + 2r2 + 3r3 + · · ·nrn = n) is

n!

r1!r2! · · · rn!(n + 1 − r1 − r2 · · · rn)!
.

Using this and a similar formula for the number of partitions
with prescribed block sizes, we obtain the following list ofcar-
dinalities for noncrossing partitions inNC(7) with prescribed
block sizes. The cardinalities of all partitions inP(7) with
these prescribed block sizes is also shown in parenthesis:

• (7): 1 (of 1)
• (6, 1): 7 (of 7)
• (5, 2): 7 (of 21)
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• (5, 1, 1): 21 (of 21)
• (4, 3): 7 (of 35)
• (4, 2, 1): 42 (of 105)
• (4, 1, 1, 1): 35 (of 35)
• (3, 3, 1): 21 (of 70)
• (3, 2, 2): 21 (of 105)
• (3, 2, 1, 1): 105 (of 210)
• (3, 1, 1, 1, 1): 35 (of 35)
• (2, 2, 2, 1): 35 of (of 105)
• (2, 2, 1, 1, 1): 70 (of 105)
• (2, 1, 1, 1, 1, 1): 21 (of 21)
• (1, 1, 1, 1, 1, 1, 1): 1 (of 1)

This totals429 noncrossing partitions, and877 partitions. A
similar listing can be written down for partitions of order4,
5, and6 also.

For the proof, we need to compute (8) for all possible block
cardinalities(r1, ..., rk), and insert these in (11). The formulas
for the three first moments are obvious, since all partitionsof
length≤ 3 are noncrossing. For the remaining computations,
the following two observations save a lot of work:

• If ρ1 ∈ P(n1), ρ2 ∈ P(n2) with n1 < n2, andρ1 can
be otained fromρ2 by omitting elementsk in {1, ..., n2}
such thatk and k + 1 are in the same block, then we
must have thatKρ1,u = Kρ2,u. This is straightforward to
prove since it folows from the proof of theorem 2 that
ik+1 can be chosen arbitrarily between1 andN in such
a case.

• Kρ1,u = Kρ2,u if the set of equations (37) forρ1 can be
obtained by a permutation of the variables in the set of
equations forρ2. Since the rank of the matrix for (37)
equals the number of equations−1, we actually need
only have that|ρ1| − 1 of the |ρ1| equations can be
obtained from permutation of|ρ2| − | equations of the
|ρ2| equations in the equation system forρ2

A. The moment of fourth order

The result is here obvious except for the case for the three
partitions with block cardinalities(2, 2) (for all other block
cardinalities, all partitions are noncrossing, so thatKr1,r2,...,rk

is simply the number of noncrossing partitions with block
cardinalities(r1, ..., rk). this number can be computed from
lemma 2). Two of the partitions with blocks of cardinality
(2, 2) are noncrossing, the third one is not. We see from
lemma 1 that the total contribution is

K2,2 = 2 + K{{1,3},{2,4}},u

= 2 + 2
3 = 8

3 .

The formula for the fourth moment follows.

B. The moment of fifth order

Here two cases require extra attention:
1) ρ = {ρ1, ρ2} with |ρ1| = 3, |ρ2| = 2: There are10 such

partitions, and5 of them have crossings and constribute with
K{{1,3},{2,4}},u. The total contribution is therefore

5 + 5 × K{{1,3},{2,4}},u

= 5 + 5 × 2
3 = 25

3 .

2) ρ = {ρ1, ρ2, ρ3} with |ρ1| = |ρ2| = 2, |ρ3| = 1: There
are 15 such partitions, of which5 have crossings. The total
contribution is therefore

10 + 5 × K{{1,3},{2,4}},u

= 10 + 5 × 2
3 = 40

3 .

C. The moment of sixth order

Five cases require extra attention:
1) ρ = {ρ1, ρ2} with |ρ1| = 4, |ρ2| = 2: There are15 such

partitions, and6 of them are noncrossing. The crossing ones
contribute withK{{1,3},{2,4}},u, so the total contribution is

6 + 9K{{1,3},{2,4}},u

= 6 + 9 × 2
3 = 12.

2) ρ = {ρ1, ρ2} with |ρ1| = |ρ2| = 3: There are10 such
partitions. 3 of these are noncrossing. One of the crossing
partitions contribute withK{{1,3,5},{2,4,6}},u, the others con-
tribute withK{{1,3},{2,4}},u. The total contribution is therefore

3 + 6 × K{{1,3},{2,4}},u + K{{1,3,5},{2,4,6}},u

= 3 + 6 × 2
3 + 11

20 = 151
20 .

3) ρ = {ρ1, ρ2, ρ3} with |ρ1| = 3, |ρ2| = 2, |ρ3| = 1:
There are60 such partitions, of which30 are noncrossing.
The total contribution is

30 + 30 × K{{1,3},{2,4}},u

= 30 + 30 × 2
3 = 50.

4) ρ = {ρ1, ρ2, ρ3} with |ρ1| = |ρ2| = |ρ3| = 2: There
a 15 such partitions.5 of them are noncrossing.4 of the
partitions with crossings have no inner block, and each of
these contributes withK{{1,4},{2,5},{3,6}},u. The remaining
6 partitions with crossings have an inner block, and each
contributes withK{{1,3},{2,4}},u. The total contribution is
therefore

5 + 4K{{1,4},{2,5},{3,6}},u + 6K{{1,3},{2,4}},u

= 5 + 4 × 1
2 + 6 × 2

3 = 11.

5) ρ = {ρ1, ρ2, ρ3, ρ4} with |ρ1| = |ρ2| = 2, |ρ3| = |ρ4| =
1: There are45 such partitions, of which15 has crossings.
The total contribution is

30 + 15K{{1,3},{2,4}},u

= 30 + 15 × 2
3 = 40.

D. The moment of seventh order

8 cases require extra attention:
1) ρ = {ρ1, ρ2} with |ρ1| = 5, |ρ2| = 2: There are21

such partitions, and7 of them are noncrossing. The total
contribution is

7 + 14 × K{{1,3},{2,4}},u

= 7 + 14 × 2
3 = 49

3 .

2) ρ = {ρ1, ρ2} with |ρ1| = 4, |ρ2| = 3: There are35
such partitions, of which7 are noncrossing.7 of the partitions
with crossings contribute withK{{1,3,5},{2,4,6}},u, the rest
contribute withK{{1,3},{2,4}},u. The total contribution is

7 + 7 × K{{1,3,5},{2,4,6}},u + 21 × K{{1,3},{2,4}},u

= 7 + 7 × 11
20 + 21 × 2

3 = 497
20 .
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3) ρ = {ρ1, ρ2, ρ3} with |ρ1| = 4, |ρ2| = 2, |ρ3| = 1: The
total contribution is

7 × 12 = 84.

4) ρ = {ρ1, ρ2, ρ3} with |ρ1| = 3, |ρ2| = 3, |ρ3| = 1: The
total contribution is

7 × 151
20 = 1057

20 .

5) ρ = {ρ1, ρ2, ρ3} with |ρ|| = 3, |ρ2| = |ρ3| = 2: This is
the hardest one to compute. A close inspection of all105 such
partitions in light of lemma 1 gives that21 of them contribute
with 1 (the noncrossing ones),14 of them contribute with9

20 ,
42 of them contribute with2

3 , and28 of them contribute with
1
2 . The total contribution is therefore

21 + 14 × 9
20 + 42 × 2

3 + 28 × 1
2 = 63 + 63

10 = 693
10 .

6) ρ = {ρ1, ρ2, ρ3, ρ4} with |ρ1| = 3, |ρ2| = 2, |ρ3| =
|ρ4| = 1: The total contribution is

21 × 25
3 = 175.

7) ρ = {ρ1, ρ2, ρ3, ρ4} with |ρ1| = |ρ2| = |ρ3| = 2, |ρ4| =
1: The total contribution is

7 × 11 = 77.

8) ρ = {ρ1, ρ2, ρ3, ρ4, ρ5} with |ρ1| = |ρ2| = 2, |ρ3| =
|ρ4| = |ρ5| = 1: The total contribution is

35 × 8
3 = 280

3 .

APPENDIX E
THE PROOF OF THEOREM4

In order to get the exact expressions in theorem 4, we now
need to keep track of theKρ,u,N defined by (4), not only the
limits Kρ,u (if we had not assumedω = u, the calculations
for Kρ,ω,N would be much more cumbersome). Whenρ is
a partition of{1, ..., n} and n ≤ 4, we have thatKρ,u,N =
Kρ,u = 1 whenρ 6= {{1, 3}, {2, 4}}. We also have that

K{{1,3},{2,4}},u,N =
2

3
+

1

N
+

1

6N2
, (40)

where we have used that
∑N

i=1 i2 = N
3 (N + 1)(N + 1

2 ) [26].
We also need the exact expression for the quantity

Tρ =
∑

(j1 ,...,jn)

giving rise toρ

L−|ρ|

D1(N)(j1, j1)D2(N)(j2, j2)
· · · × Dn(N)(jn, jn)

from (33) (i.e. we can not add (34) to obtain the approximation
(35) here). We see that

Tρ = Dρ −
∑

ρ′>ρ

L|ρ′|−|ρ|Tρ′ , (41)

(whereDρ and Dn are defined as in section II, but without
taking the limit) which can be used recursively to express the

Tρ in terms of theDρ. We obtain the following formulas for
n = 4:

T{{1,2,3,4}} = D4

T{{1,2,3},{4}} = D3D1 − L−1D4

T{{1,2},{3,4}} = D2
2 − L−1D4

T{{1,2},{3},{4}}
= D2D

2
1 − 2L−1

(

D3D1 − L−1D4

)

−L−1
(

D2
2 − L−1D4

)

− L−2D4

= D2D
2
1 − L−1

(

D2
2 + 2D3D1

)

+ 2L−2D4

T{{1},{2},{3},{4}}
= D4

1 − 6L−1
(

D2D
2
1 − L−1

(

D2
2 + 2D3D1

)

+ 2L−2D4

)

−3L−2
(

D2
2 − L−1D4

)

−4L−2
(

D3D1 − L−1D4

)

− L−3D4

= −6L−3D4 + L−2
(

8D3D1 + 3D2
2

)

− 6L−1D2D
2
1 + D4

1.
(42)

For n = 3 andn = 2 the formulas are

T{{1,2,3}} = D3

T{{1,2},{3}} = D1D2 − L−1D3

T{{1},{2},{3}} = D3
1 − 3L−1D1D2 + 2L−2D3

T{{1,2}} = D2

T{{1},{2}} = D2
1 − L−1D2.

(43)

It is clear that (42) and (43) cover all possibilities when it
comes to partition block sizes. Using (9), and putting (40),
(42), and (43) into (33) we get the expressions in theorem 4
after some calculations.

A. First order approximations to theorem 4

If we are only interested in first order approximations rather
than exact expressions, (41) gives us

Tρ ≈ Dρ −
∑

ρ′>ρ

|ρ|−|ρ′|=1

L−1Dρ′ ,

which is easier to compute. Also, we need only first order
approximations toKρ,u,N , which is much easier to compute
than the exact expression. For (40), this is

K{{1,3},{2,4}},u,N ≈ 2

3
+

1

N
,

Inserting these two approximations in (33) gives a first order
approximation of the moments.

APPENDIX F
THE PROOF OF THEOREM5

For ρ = 1n theorem 5 is trivial. We will thus assume that
ρ 6= 1n in the following. We first prove thatlimN→∞ Kρ,ω,N

exists wheneverpω is continous. To simplify notation, define

F (ω) =
n
∏

k=1

1 − ejN(ωb(k−1)−ωb(k))

1 − ej(ωb(k−1)−ωb(k))

=
n
∏

k=1

sin
(

N(ωb(k−1) − ωb(k))/2
)

sin
(

(ωb(k−1) − ωb(k))/2
) ,

and setω = (ω1, ..., ω|ρ|) anddω = dω1 · · · dω|ρ|. Sinceω is
continous, there exists apmax such thatpω(ωi) ≤ pmax for
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all ωi. Then we have that

|Kρ,ω,N | ≤ p|ρ|
max

Nm+1−|ρ|

×
∫

[0,2π)|ρ|

∏n
k=1

∣

∣

∣

∣

sin(N(xb(k−1)−xb(k))/2)
sin((xb(k)−xb(k+1))/2)

∣

∣

∣

∣

dx,

where we have converted to Lebesgue measure. Consider first
the set

U = {ω||xb(k−1) − xb(k)| ≤ π∀k}.
When 2π

N ≤ |ωb(k−1) − ωb(k)| ≤ π, it is clear that
∣

∣

∣

∣

∣

sin
(

N(xb(k−1) − xb(k))/2
)

sin
(

(xb(k−1) − xb(k))/2
)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

4

xb(k−1) − xb(k)

∣

∣

∣

∣

, (44)

since
∣

∣sin
(

N(xb(k−1) − xb(k))/2
)∣

∣ ≤ 1, and since| sin(x)| ≥
|x2 | when|x| ≤ π

2 . When|xb(k−1) −xb(k)| ≤ 2π
N we have that

∣

∣

∣

∣

∣

sin
(

N(xb(k−1) − xb(k))/2
)

sin
(

(xb(k−1) − xb(k))/2
)

∣

∣

∣

∣

∣

≤ N. (45)

Let k1, ..., k|ρ| ∈ Z, and assume thatk|ρ| = 0. By using the
triangle inequality, it is clear that on the set

Dk1,...,k|ρ|−1
= {ω|

∣

∣

∣

∣

xi −
2kiπ

N

∣

∣

∣

∣

≤ π

N
∀1 ≤ i ≤ |ρ|},

when |kr − ks| ≥ 2 for all r, s, the i’th factor in F (x) is
bounded by 4N

(|kb(r−1)−kb(r)|−1)π
due to (44). Also, when|kr−

ks| < 2 for somer, s, the corresponding factors inF (x) are
bounded byN on Dk1,...,k|ρ|

due to (45). Note also that the
volume of Dk1,...,k|ρ|−1

is (2π)|ρ|−1N1−|ρ|. By adding some
more terms (to compensate for the different behaviour for|kr−
ks| ≥ 2 and|kr−ks| < 2), we have that we can find a constant
D that

1
Nn+1−|ρ|

∫

U
|F (x)|dx

≤ 1
Nn+1−|ρ| N

n

×
∑

0≤k1,...,k|ρ|−1<N

all ki different

(

∏n
r=1

D
|kb(r−1)−kb(r)|

)

2π(2π)|ρ|−1N1−|ρ|

= (2π)|ρ|Dn
∑

0≤k1,...,k|ρ|−1<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)| ,

(46)
where we have integrated w.r.t.x|ρ| also (i.e. kρ| is kept
constant in (46)). A similar analysis as forU applies for the
complement set

V = {ω|π ≤ |xb(k−1) − xb(k)| ≤ 2π for somek},
so that we can find a constantC such that

1
Nn+1−|ρ|

∫

[0,2π)|ρ| |F (x)|dx

≤ C
∑

0≤k1,...,k|ρ|−1<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)| ,

(47)

It is clear this sum converges: First of all, this is only needed
to prove forρ = 0n, since the summands forρ 6= 0n is only
a subset of the summands forρ = 0n.

Secondly, forρ = 0n, (47) can be bounded by considering
convolutions of the following function with itself:

f(x) =

{ 1
|x| for |x| > 1

0 for |x| ≤ 1
(48)

The assumption thatf(x) = 0 in a neighbourhood of zero is
due to the fact that theki are all different. Note that|f(x)| ≤

1
|x|1−ǫ for any 0 < ǫ < 1. Also, then − 2-fold convolution
(we wait with then − 1’th convolution till the end) of 1

|x|1−ǫ

with itself exist outside0 whenever0 < (n − 2)ǫ < 1, and is
on the formr 1

|x|1−(n−2)ǫ for some constantr [26]. Therefore,
(47) is bounded by
∫

|x|>1

r
1

|x|1−(n−2)ǫ

1

|x|dx =

∫

|x|>1

r
1

|x|2−(n−2)ǫ
dx

=
2r

(n − 2)ǫ − 1
.

This proves that the entire sum (47) is bounded, and thus
also the statement on the existence of the limitK(ρ, ω) in
theorem 5 when the density is continous.

For the rest of the proof of theorem 5 , we first record the
following result:

Lemma 3:For anyǫ > 0,

lim
N→∞

1

Nn+1−|ρ|

∫

Bǫ,r

F (ω)dω = 0, (49)

where

Bǫ,r = {(ω1, ..., ω|ρ|)||ωb(r−1) − ωb(r)| > ǫ}.
Proof: The setBǫ,r corresponds to thosek1, ..., k|ρ| in (47)

for which |kb(r−1) − kb(r)| > N
2π ǫ. Thus, for largeN , we sum

overk1, ..., k|ρ| in (47) for which|kb(r−1)−kb(r)| is arbitrarily
large. By the convergence of the Fourier integral of1

|x| , it is
clear that this converges to zero.

Define

Bǫ = {(ω1, ..., ω|ρ|)||ωi − ωj| > ǫ for somei, j}.
If ω ∈ Bǫ, there must exist anr so that|ωb(r−1)−ωb(r)| > 2ǫ

n ,
so thatω ∈ Br,2ǫ/n. This means that

Bǫ ⊂ ∪rBr,2ǫ/n,

so that by lemma 3 also

lim
N→∞

1

Nn+1−|ρ|

∫

Bǫ

F (ω)dω = 0.

This means that in the integral forKρ,ω,N , we need only
integrate over theω which are arbitrarily close to the diagonal,
(whereω1 = · · · = ω|ρ|). We thus have

Kρ,ω = limN→∞
1

Nn+1−|ρ|

∫

[0,2π)|ρ| F (x)
∏|ρ|

r=1 pω(xr)dx

= limN→∞
1

Nn+1−|ρ|

∫

[0,2π)|ρ| F (x)pω(x|ρ|)
|ρ|dx

= limN→∞
1

Nn+1−|ρ|

∫ 2π

0
pω(x|ρ|)

|ρ|
(

∫

[0,2π)|ρ|−1 F (x)dx1 · · · dx|ρ|−1

)

dx|ρ|.

We used here the fact that the density is continous. Using that

limN→∞
1

Nn+1−|ρ|

∫

[0,2π)|ρ|−1 F (x)dx1 · · · dx|ρ|−1

= (2π)|ρ|−1Kρ,u
(50)

whenx|ρ| is kept fixed at an arbitrary value (this is straightfor-
ward by using the methods from the proof of theorem 2 and
(12)), and again using the fact that the density is continous,
we get that the above equals

Kρ,u(2π)|ρ|−1

∫ 2π

0

pω(x|ρ|)
|ρ|dx|ρ|,

which is what we had to show.
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APPENDIX G
THE PROOF OF THEOREM6

The contribution in the integralKρ,ω,N comes only from
when the ωi coincide with the atoms ofp. Actually, we
evaluate1−ejNω

1−ejω in points on the formω = αi − αj . This
evaluates toNnpn

i when allωi are chosen equal to the same
atomαj . SincelimN→∞

1−ejNω

N(1−ejω) = 0 for any fixedω 6= 0,
limN→∞ Kρ,ω,NN−n = 0 when ω is chosen from nonequal
atoms. (32) (with additional1/N -factors) thus becomes

∑

ρ∈P(n)
∑

(j1,...,jn)

giving rise toρ
∑

(i1,...,in)

N |ρ|−2n−1c|ρ|−1L−|ρ|

(
∑

i Nnpn
i + aρ,NNn))

D1(N)(j1, j1)D2(N)(j2, j2)
· · · × Dn(N)(jn, jn),

(51)

wherelimN→∞ aρ,N = 0. Multiplying both sides withN and
letting N go to infinity gives

lim
N→∞

∑

ρ∈P(n)

N |ρ|−nc|ρ|−1

(

∑

i

pn
i + aρ,N

)

Dρ.

It is clear that this converges to0 whenρ 6= 0n (since|ρ| < n
in this case), so that the limit is

cn−1

(

∑

i

pn
i

)

α0n
= cn−1p(n) lim

N→∞

n
∏

i=1

trL (Di(N)) ,

which proves the claim

APPENDIX H
THE PROOF OF THEOREM7

We need the following identity [26]:
∫ ∞

0

x−sejnxdx =
Γ(1 − s)

|n|1−s
e

jsgn(n)(1−s)π
2 ,

wheresgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and 0
otherwise. From this it follows that

∫∞
−∞ pi|x − αi|−sejnxdx =

2pie
jnαi Γ(1−s)

|n|1−s cos
(

(1−s)π
2

)

.
(52)

Note that the measure with densityp, has the same asymptotics
nearαi as the measure with densitypi|x − αi|−s on

(

−
(

1 − s

2pi

)
1

1−s

,

(

1 − s

2pi

)
1

1−s

)

.

As in the proof in appendix G, the integral for the expansion
coefficients is dominated by the behaviour near the points
(αi, ..., αi). To see this, note that the behaviour near the
singular points on the diagonal isO (s(|ρ| − n) − 1) when
polynomic growth of orders of the density near the singular
points is assumed. This is very much related to (47) in
appendix F, sinceKρ,ω here in a similar way can be bounded
by (taking into account new powers ofN )

C 1
Nn+ns+1−|ρ| N

nN−|ρ|N |ρ|s

×
∑

0≤k1,...,k|ρ|<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)|

∏|ρ|
t=1 k−s

t . (53)

In (53), theNn-factor appears in exactly the same way as
in the proof of theorem 5 in appendix F,N−|ρ| appears as
a volume inR

|ρ|, and N |ρ|s comes from evaluation of the
density in the pointsxi = 2kiπ

N , 1 ≤ i ≤ |ρ|). Since 1
|x|s has a

bounded integral around0, and since the sum still converges
(it is dominated by (47)), (53) is

O (s(|ρ| − n) − 1) .

This has it’s highest order when|ρ| = n, so that we can restrict
to looking at0n. Note also that we may just as well assume
that pω(x) is identical topi|x − ωi|−s at an interval around
ωi, sincelimx→αi

|x − αi|spω(x) = pi implies that

pω(x) = pi|x − ωi|−s + k(x)|x − ωi|−s (54)

wherelimx→ωi
k(x) = 0. It is straightforward to see that the

contribution of the second part in (54) to (53) vanishes as
N → ∞, so that we may just as well assume thatpω(x) is
identical topi|x−ωi|−s at an interval aroundωi, as claimed.
Also, since

lim
n→∞

∫

|x|>ǫ

x−sejnxdx = 0

for all ǫ > 0, and since the contributions from largen dominate
in (55) below (since

∑

n |n|−s diverges), it is clear that we
can restrict to an interval aroundωi when computing the limit
also (sincepω is continous outside the singularity points, this
follows from theorem 5, and due to the additional1

Ns -factor
added to (1)). After restricting to0n, multiplying both sides
with N , summing over all singularity points, and using (52),
we obtain the approximation
∑

(i1,...,in)
∑

a

N−nscn−1×
(

2paΓ(1 − s) cos
(

(1−s)π
2

))n

×
∏n

k=1
ej(ik−1−ik)αa

|ik−1−ik|1−s

trL(D1(N))trL(D2(N)) · · · trL(Dn(N))
(55)

to (32). Since
∏n

k=1 ej(ik−1−ik)αa = 1, we recognize

q(n,N) =
(

2Γ(1 − s) cos
(

(1−s)π
2

))n

(
∑

a pn
a)×

∑

(i1,...,in) N−ns
∏n

k=1
1

|ik−1−ik|1−s ,

as a factor in (55) such that the limit of (55) asN → ∞ can
be written

cn−1 lim
N→∞

q(n,N) lim
N→∞

n
∏

i=1

trL (Di(N)) .

It therefore suffices to prove thatlimN→∞ q(n,N) = q(n). To
see this, write

N−s

|ik−1 − ik|1−s =
1

N

1
(

1
N

)1−s |ik−1 − ik|1−s

=
1

N

1
∣

∣

∣

ik−1

N − ik

N

∣

∣

∣

1−s .

Summing over all1 ≤ i1, ..., in ≤ N , it is clear from this that
q(n,N) can be viewed as a Riemann sum which converges to
q(n) asN → ∞.
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