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Abstract

We focus on a multidimensional field with uncorrelated spectrum, and study the quality of the

reconstructed signal when the field samples are irregularlyspaced and affected by independent and

identically distributed noise. More specifically, we applylinear reconstruction techniques and take the

mean square error (MSE) of the field estimate as a metric to evaluate the signal reconstruction quality.

We find that the MSE analysis could be carried out by using the closed-form expression of the eigenvalue

distribution of the matrix representing the sampling system. Unfortunately, such distribution is still

unknown. Thus, we first derive a closed-form expression of the distribution moments, and we find

that the eigenvalue distribution tends to the Marčenko-Pastur distribution as the field dimension goes to

infinity. Finally, by using our approach, we derive a tight approximation to the MSE of the reconstructed

field.

I. INTRODUCTION

We address the important issue of reconstructing a multidimensional signal from a collection of samples

that are noisy and not uniformly spaced. As a case study, we consider a wireless sensor network for

environmental monitoring, where the nodes sensing the physical phenomenon (hereinafter also called

field) are randomly deployed over the area under observation. The sensors sample ad-dimensional

spatially finite physical field, whered may take into account spatial dimensions as well as the temporal

dimension. Examples of such fields are pressure or temperature, on a 4-dimension domain, i.e., three

spatial coordinates plus the time dimension. A spatially finite physical field is not bandlimited, however it

admits an infinite Fourier series expansion. Here, we consider a finite approximation of the physical field

obtained by truncating such series, assuming that the contribution of the truncated terms is negligible.
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In our case study, we assume that the measured samples are transferred from the sensors to a common

data-collecting unit, the so-called sink node, which is in charge of reconstructing the field. Distributed

systems, where in-network processing, is performed are outof the scope of this work. We do not deal

with issues related to information transport and, thus, we assume that all samples are correctly received

at the sink node. The field samples, however, are corrupted byadditive i.i.d. noise, due to quantization,

round-off errors or quality of the sensing device. Furthermore, the sampling points are known at the sink

node, because(i) either sensors are located at pre-defined positions or theirposition can be estimated

through a localization technique [1], and(ii) the sampling time is either periodic or included in the

information sent to the sink.

Several efficient and fast algorithms have been proposed to numerically reconstruct or approximate

a signal in such setting, which amount to the solution of a linear system (see [2], [3] and references

therein). A widely used technique consists in processing the sensors’ measures by means of a linear filter,

which is a function of the system parameters known at the sink. We observe that the following two major

factors affect the linear reconstruction:

(i) the given machine precision, which may prevent the reconstruction algorithm from performing

correctly and may lead to a non-negligible probability of reconstruction failure [3],

(ii) the noise level affecting the sensors’ measurements.

In the latter case, a measure of reconstruction accuracy is given by the mean square error (MSE) of

the field estimate. In [4], [5], we have found that these issues could be studied by using the eigenvalue

distribution of the reconstruction matrix; however, obtaining such a distribution is still an open problem.

In this work, we first extend the system model and the problem formulation presented in [5] to the case

of multidimensional fields (Section III). Then, we derive a closed-form expression of the moments of

the eigenvalue distribution, through asymptotic analysis(Section V). By using the moments expressions,

we prove that the eigenvalue distribution of the matrix representing the sampling system tends to the

Marčenko-Pastur distribution [6] as the field dimensiond → ∞ (Section VI).

We apply our results to the study of the MSE of the field estimate, when the sensors measurements

are noisy and the reconstruction at the sink is performed through linear filtering.

We generalize the MSE expressions to the multidimensional case (with finited), and we show that,

by using the Marčenko-Pastur distribution instead of the actual eigenvalue distribution, we obtain an

approximation to the MSE of the reconstructed field which is very tight for d ≥ 3 (Section VII).

Before providing a detailed description of our analysis, inthe next section we discuss some related

studies and highlight our main contributions with respect to previous work.
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II. RELATED WORK AND MAIN CONTRIBUTIONS

Relevant to our work is the literature on spectral analysis,where, however, several studies deal with

regularly sampled signals (e.g., [7] and references therein). An excellent guide to irregular sampling is

[8], which presents a large number of techniques, algorithms, and applications. Reconstruction techniques

for irregularly or randomly sampled signals can be found in [3], [9], [10], just to name few. In particular,

Feichtinger and Gröchenig in [10] provide an error analysis of an iterative reconstruction algorithm taking

into account round-off errors, jitters, truncation errorsand aliasing. From the theoretical point of view,

irregular sampling has been studied in [3], [9]–[14] and references therein.

In the context of sensor networks, efficient techniques for spatial sampling are proposed in [15], [16].

In particular, in [16], an adaptive sampling is described, which allows the central data-collector to vary

the number of active sensors, i.e., samples, according to the desired resolution level. Data acquisition is

also studied in [17], where the authors consider a unidimensional field, uniformly sampled at the Nyquist

frequency by low precision sensors. The authors show that the number of samples can be traded-off with

the precision of sensors. The problem of the reconstructionof a bandlimited signal from an irregular set

of samples at unknown locations is addressed in [18]. There,different solution methods are proposed,

and the conditions for which there exist multiple solutionsor a unique solution are discussed. Differently

from [18], we assume that the sink can either acquire or estimate the sensor locations and that sensors

are randomly deployed.

The field reconstruction at the sink node with spatial and temporal correlation among sensor measures

is studied, for instance, in [19]–[23]. Other interesting studies can be found in [24], [25], which address

the perturbations of regular sampling in shift-invariant spaces [24] and the reconstruction of irregularly

sampled images in presence of measurement noise [25].

We point out that our main contribution with respect to previous work on signal sampling and

reconstruction is the probabilistic approach we adopt to analyze the quality level of a signal reconstructed

from a set of irregular, noisy samples. Our analysis, however, applies to sampling systems where the

field reconstruction is performed in a centralized manner. Finally, we highlight that our previous work [5]

assumes that sensors are uniformly distributed over the spatial observation interval and may be displaced

around a known average location. The effects of noisy measures and jittered positions are analyzed when

linear reconstruction techniques are employed. However, only the unidimensional case is studied and

semi-analytical derivations of the MSE of the reconstructed field are obtained. In [26], instead, sensors

are assumed to be fixed, and the objective is to evaluate the performance of a linear reconstruction
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technique in the presence of quasi-equally spaced sensor layouts.

A. Main results

The goal of this work is to provide an analytical study on the reconstruction quality of a multidi-

mensional physical field, with uncorrelated spectrum. The field samples are (i) irregularly spaced, since

they are gathered by a randomly deployed sensor network and (ii) affected by i.i.d. noise. The sink

node receives the field samples and runs the reconstruction algorithm in a centralized manner. Our major

contributions with respect to previous work are as follows.

1. Given ad-dimensional problem formulation, we obtain analytical expressions for the moments of the

eigenvalue distribution of the reconstruction matrix. Using the expressions of the moments, we show

that the eigenvalue distribution tends to the Marčenko-Pastur distribution [6] as the field dimension

d → ∞.

2. We apply our results to the study of the quality of a reconstructed field and derive a tight approxi-

mation to the MSE of the estimated field.

III. PRELIMINARIES

We first present the multidimensional formulation of our reconstruction problem. Then, we give some

background on linear reconstruction techniques and generalize to the multidimensional case some results

previously obtained in the unidimensional case [5]. Finally, we highlight the main steps followed in our

study.

Notation:Lower case bold letters denote column vectors, while upper case bold letters denote matrices.

We denote the(h, k)-th entry of the matrixX by (X)h,k, the transpose ofx by xT, and the conjugate

transpose ofx by x†. The identity matrix is denoted byI. Finally, E[x] is the average ofx and subscripts

to the average operator specify the variable with respect towhich the average is taken.

A. Irregular sampling of multidimensional signals

Let us consider ad-dimensional, spatially-finite physical field (d ≥ 1), wherer sensors are located

in the hypercubeH = {x |x ∈ [0, 1)d} and measure the value of the field. We assume that the sensor

sampling points are known. At first, we consider that they aredeterministic, then we will assume that

they are i.i.d. random variables uniformly distributed in the hypercubeH.
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When observed over a finite region, ad-dimensional physical fields(x) with finite energyEs admits

an infinited-dimensional Fourier series expansion with coefficientsãℓ, such thatEs =
∑+∞

ℓ1,...,ℓd=−∞ |ãℓ|2

whereℓ = [ℓ1, . . . , ℓd] is a vector of integers andℓm, m = 1, . . . , d represents the index of the expansion

along them-th dimension. We truncate the expansion to2M + 1 terms per dimension whereM is such

that
∑−M−1

ℓ1,...,ℓd=−∞ |ãℓ|2 +
∑+∞

ℓ1,...,ℓd=M+1 |ãℓ|2 ≪ Es Therefore, one can think ofM as the approximate

one-sided bandwidth (per dimension) of the field, which can be approximated over the finite regionH
as

s(x) = (2M + 1)−d/2
∑

ℓ

aν(ℓ)e
j2πxTℓ (1)

where the term(2M +1)−d/2 is a normalization factor and
∑

ℓ
represents ad-dimensional sum over the

vectorℓ, with ℓm = −M, . . . ,M . Also, aν(ℓ) = ãℓ and the function

ν(ℓ) =

d∑

m=1

(2M + 1)m−1ℓm,

− (2M+1)d−1
2 ≤ ν(ℓ) ≤ + (2M+1)d−1

2 maps the vectorℓ onto a scalar index. Note that, whilẽaℓ has a

vectorial index,aν(ℓ) has a scalar index and it has been introduced to simplify the notation. As an example,

for d = 2 andM = 1, we haveν(ℓ) = 3ℓ1+ℓ2 ands(x1, x2) = 1
3

∑1
ℓ1=−1

∑1
ℓ2=−1 a3ℓ2+ℓ1e

j2π(x1ℓ1+x2ℓ2).

Let X = {x1, . . . ,xr}, with xq = [xq,1, . . . , xq,d]
T ∈ H, q = 1, . . . , r, be the set of sampling points,

ands = [s1, . . . , sr]
T, sq = s(xq), the values of the corresponding field samples. Following [3], we write

the vector of field valuess as a function of the spectrum:

s = G
†
da (2)

wherea is a vector of size(2M +1)d, whoseν(ℓ)-th entry is given byaν(ℓ), andGd is the(2M + 1)d×r

matrix:

(Gd)ν(ℓ),q = (2M + 1)−d/2e−j2πxT
q ℓ (3)

In general, the entries ofa can be correlated with covariance matrixE[aa†] = σ2
aCa, andTr{Ca} =

(2M +1)d. In the following, we restrict our analysis to the class of fields characterized byE[aa†] = σ2
aI.

If the sensor measurements,p = [p1, . . . , pr]
T, are noisy, then the relation between sensors’ samples and

field spectrum can be written as:

p = s + n = G
†
da + n (4)

where the noise is represented by ther-size, zero-mean random vectorn, with covariance matrixE[nn†] =

σ2
nIr. We define the signal-to-noise ratio on the measure as:SNRm

△
= σ2

a/σ
2
n

△
= 1/α.
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B. Sampling rate

Following [5], we introduce the parameterβ defined as:

β =
(2M + 1)d

r
(5)

This parameter represents the ratio between the number of harmonics used for the field reconstruction

and the number of sensors sampling the field. In the following, we considerβ ∈ [0, 1). Notice that for

fixed β andM , the numberr of samples exponentially increases withd.

C. Previous results on reconstruction quality

Given an estimatêa of the field spectruma, the reconstructed signal is:

ŝ(x) = (2M + 1)−d/2
∑

ℓ

âν(ℓ)e
j2πxTℓ (6)

As reconstruction performance metric, we consider the MSE of the field estimate, which, for any given

set of sampling pointsX , is defined as:

MSEX = E
a,n

∫

H

|ŝ(x) − s(x)|2 dx =
E
a,n

‖â − a‖2

(2M + 1)d
(7)

where the average is taken with respect to the subscripted random vectors. Note that (7) still assumes

that the sampling points are deterministic; this assumption will be removed later in the paper.

For linear models such as (4), several estimation techniques based on linear filtering are available in

the literature [27]. We employ a filterB such that the estimate of the field spectrum is given by the

linear operation

â = B†p (8)

where B is an r × (2M + 1)d matrix. In particular, we consider the linear filter providing the best

performance in terms of MSE, i.e., the linear minimum MSE (LMMSE) filter1 [27]:

B = G
†
d(Rd + αI)−1 (9)

whereRd = GdG
†
d.

From now on, we carry out our analysis under the assumption that the elements of the setX are

independent random vectors, with i.i.d. entries, uniformly distributed in the hypercubeH.

In [5], we have shown that a simple and effective tool to evaluate the performance of large finite

systems is asymptotic analysis. We computed the MSE by letting the field number of harmonics and the

1Notice that when the covariance matrix ofa is known, the LMMSE filter generalizes to(G†
d
CaGd + αI)−1

G
†
d
Ca.
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number of samples grow to infinity, while their ratioβ = (2M + 1)d/r is kept constant. We observed

the validity of asymptotic analysis results, even for smallvalues ofM andr. Similarly, here we consider

as performance metric theasymptotic averageMSE, normalized toσ2
a:

MSE∞ = lim
M,r→+∞

β

1

σ2
a

E
X

[MSEX ] (10)

whereβ below the limit denotes the ratio which is kept constant. In (10), the average is over all possible

realizations of the setX . Using (7)–(9) and the above definitions, in Appendix E we show that, in the

case of the LMMSE:

MSE∞ = E
λd,β

[
αβ

λd,β + αβ

]
(11)

where λd,β is a random variable with probability density function (pdf) fd,β(x), distributed as the

asymptotic eigenvalues ofTd = βRd = βGdG
†
d. The subscriptsd andβ of λ indicate that the distribution

of the asymptotic eigenvalues ofTd depends on both the field dimensiond and the parameterβ.

The matrixTd plays an important role in our analysis; in the following, weintroduce some of its

properties. In the unidimensional case (d = 1), T1 is a (2M + 1)× (2M + 1) Hermitian Toeplitz matrix

given by

T1 = T
†
1 =




t0 t1 · · · t2M

t−1 t0 · · · t2M−1

. . .

t−2M t−2M+1 · · · t0




where (T1)ℓ,ℓ′ = tℓ−ℓ′ = 1
r

∑r
q=1 exp(−j2π(ℓ − ℓ′)xq), ℓ, ℓ′ = −M, . . . ,M . For d ≥ 2, Td can be

defined recursively as a(2M + 1)d × (2M + 1)d Hermitian Block Toeplitz matrix with non Hermitian

Toeplitz blocks:

Td =




B0 B1 · · · B2M

B−1 B0 · · · B2M−1

...
...

...

B−2M B−2M+1 · · · B0




where

(Td)ν(ℓ),ν(ℓ′) =
1

r

r∑

q=1

e−j2π(ℓ−ℓ
′)xq (12)

and ℓ, ℓ′ ∈ [−M, . . . ,M ]d. That is, the matrixTd is composed of(2M + 1)2 blocks Bi of size

(2M + 1)d−1 × (2M + 1)d−1, each including(2M + 1)2 blocks of size(2M + 1)d−2 × (2M + 1)d−2,
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and so on. The smallest blocks have size(2M + 1)× (2M + 1); they have the same structure as matrix

T1 in the unidimensional case, however only those on the main diagonal have a Hermitian structure.

Proof of this is given in [28] ford = 2; the extension to thed-dimensional case is straightforward.

IV. ESTIMATION ERROR CALCULATION METHOD

The analysis detailed in the next sections consists of the following main steps.

(i) As a practical case, we consider the asymptotic expression of the LMMSE in (11) and notice that

an analytical evaluation of the asymptotic LMMSE could be obtained by exploiting the closed-

form expression of the eigenvalue distribution,fd,β(x), of the reconstruction matrix. However, such

expression is still unknown. Hence, as a first step we derive aclosed form expression of the moments

of λd,β , for anyd andβ, and provide an algorithm to compute them.

(ii) We show that the value of the moments of the eigenvalue distribution decreases as the field dimension

d increases.

(iii) We prove that, asd → ∞, the expression of the eigenvalue distribution tends to theMarčenko-Pastur

distribution.

(iv) By using the Marčenko-Pastur distribution, we are able to obtain a tight approximation for the

LMMSE of the reconstructed field, which holds for any finite value of d.

V. CLOSED FORM EXPRESSION OF THE MOMENTS OF THE ASYMPTOTIC EIGENVALUE PDF

Ideally, we would like to obtain the analytical expression of the distributionfd,β(x) of the asymptotic

eigenvalue ofTd, for a givenβ. Unfortunately, such a calculation seems to be prohibitiveand is still an

open problem. Therefore, as a first step, we compute the closed form expression of the momentsE[λp
d,β ]

of λd,β, for any positive integerp.

In the limit for M andr growing to infinity with constantβ, the expression ofE[λp
d,β ] can be easily

obtained from the powers ofTd as in [29], [30],

E[λp
d,β ] = lim

M,r→+∞
β

1

(2M + 1)d
Tr E

X

[
T

p
d

]
(13)

In Section V-A, we show thatE[λp
d,β] is a polynomial inβ, of degreep− 1 (see (24)); the remaining

subsections describe how to compute this polynomial.

April 22, 2008 DRAFT
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A. Partitions

Using (12), the termTr E
X

[Tp
d] in (13) can be written as

Tr E
X

[
T

p
d

]
= E

X


∑

ℓ1

(Tp
d)ν(ℓ1),ν(ℓ1)




= E
X

[
∑

L∈Ld

(Td)ν(ℓ1),ν(ℓ2) · · · (Td)ν(ℓp),ν(ℓ1)

]

=
1

rp

∑

q∈Q

∑

L∈Ld

E
X

[
e−j2π

Pp

i=1 xT
qi

(ℓi−ℓ[i+1])
]

(14)

whereQ = {q | q = [q1, . . . , qp]}, qi = 1, . . . , r Ld = {L |L = [ℓ1, . . . , ℓp]}, ℓi = [ℓi1 , · · · , ℓid
]T,

ℓim
= −M, . . . M and

[i + 1] =





i + 1 1 ≤ i < p

1 i = p

In (14), the average is performed over the random set of positionsX = {x1, . . . ,xr}, with independent

and uniformly distributed elements. To obtain a closed-form expression of the distribution moments, we

rewrite (14) by using set partitioning.

LetP = {1, . . . , p} be the set of integers from 1 top. We observe that any given vectorq ∈ Q partitions

the setP into 1 ≤ k(q) ≤ p disjoint non-empty subsetsP1(q), . . . ,Pk(q), wherePj , j = 1, . . . , k(q),

is the set of indices of the entries ofq taking the same valueγj. That is,

Pj(q) = {i ∈ P | qi = γj} (15)

and k(q) is the number of distinct valuesγj taken by the entries of vectorq. SubsetsPj have the

following properties
k(q)
∪

j=1
Pj(q) = P, Pj(q) ∩ Pj′(q) = ∅

for, j 6= j′. Also, we point out that, sincer is the number of values that the entriesqi can take, there

exist r!/(r − k(q))! vectorsq ∈ Q generating a given partition ofP made ofk(q) subsets. In order to

clarify the above concepts, we provide an example below.
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Example 1: Let p = 6, thenP = {1, 2, 3, 4, 5, 6}. Also, let q = [4, 9, 5, 5, 4, 3]. Since the

distinct values inq areγj = 3, 4, 5, 9, we havek(q) = 4. It follows thatP is partitioned into

the following subsets:

P1(q) = {1, 5} (q1 = q5 = 4)

P2(q) = {2} (q2 = 9)

P3(q) = {3, 4} (q3 = q4 = 5)

P4(q) = {6} (q6 = 3)

Hence, the partition ofP induced byq is {{1, 5}, {2}, {3, 4}, {6}}.

Next, we introduce an effective method to represent partitions of a setP, by building a tree of depth

p, as in Figure 1. Such a representation will allow to simplifythe notation in the following analysis. To

build the tree of depthp, we proceed as follows. Each node of the tree is assigned witha label from

the setP = {1, . . . , p}, starting from the root which is labeled by 1. Each node generatesm + 1 leaves,

labeled in increasing order from 1 tom + 1, wherem is the largest label on the path from the root to

such node. Note that, at levelp, any value in{1, . . . , p} is used to label the leaves at least once.

Then, given a tree of depthp, we defineω = [ω1, . . . , ωp] as a path of lengthp from the tree’s root

to a leaf. We observe that a vectorq can be represented as a pathω in the tree of depthp. This is done

by assigning a label (j = 1, . . . , p) in increasing order to every distinct value ofq; the vector collecting

the labels is the pathω corresponding to the givenq. We have that the pathω, corresponding to a given

q, defines in the tree of depthp the same partition of the setP as the one induced byq. Indeed, given

a partition ofP, the subsetPj defined in (15) can be rewritten as

Pj(ω) = {i ∈ P | ωi = j}, (16)

i.e., as the set of integers corresponding to the depths of the j-th label in the path. As a last remark,

consider the number of distinct values inq (i.e., the number of distinct labels inω) to be equal tok(q),

and recall that the number of all possible values taken by thep elements ofq is equal tor. It follows

that r!/(r − k(q))! different q’s yield the same vectorω. This is in agreement with the fact that, given

P, there arer!/(r− k(q))! differentq’s generating the same partition consisting ofk(q) subsets. Again,

for the sake of clarity, we give an example.

April 22, 2008 DRAFT
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p = 4

p = 3

p = 2

p = 1

1 2 1 2 3 1 2 3 32 432

212

1

1

2

31

1 1

Fig. 1. Partitions tree of depthp = 4. The pathω = [1, 2, 1, 1] employed in Example 2 is highlighted by using dashed lines

Example 2: Let us considerp = 4 and q = [4, 9, 4, 4]. The vectorq can be represented in

the tree of depth 4 as the pathω = [1, 2, 1, 1] (i.e., the path highlighted with dashed lines in

Figure 1). Inq there are two distinct values (namely, 4 and 9), or, equivalently, in the path

ω there are two labels (namely, 1 and 2); thenk(q) = k(ω) = 2. Label 1 appears inω at

depths 1,3, and 4 (P1 = {1, 3, 4}), while label 2 appears at depth 2 (P2 = {2}). The partition

of P = {1, 2, 3, 4} induced byq or, equivalently, byω is therefore:{{1, 3, 4}, {2}}.

From the discussion above, it should be clear that considering a partition ofP is equivalent to

considering a pathω in a tree of depthp. Hence, in the following analysis, we will refer to a partition

through its corresponding pathω.

We now exploit set partitioning to rewrite (14). Since the random vectorsxq are independent, given

April 22, 2008 DRAFT
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q, the average operator in (14) factorizes intok(q) terms, i.e.,

E
X

[
e−j2π

Pp

i=1 xT
qi

(ℓi−ℓ[i+1])
]

=

k(q)∏

j=1

E
xγj

[
e
−j2πxT

γj

P

i∈Pj (q) ℓi−ℓ[i+1]

]
(17)

Each term depends on a single random vectorxγj
. Moreover, since the entries ofxγj

are independent

random variables uniformly distributed in[0, 1), we have:

E
xγj

[
e
−j2πxT

γj

P

i∈Pj (q) ℓi−ℓ[i+1]

]

=

d∏

m=1

E
xγj,m

[
e−j2πxγj,mcjm

]
=

d∏

m=1

δ(cjm) (18)

wherexγj ,m and ℓi,m are them-th entries ofxγj
and ℓi, respectively, where the functionδ(·) is the

Kronecker’s delta, and wherecjm =
∑

i∈Pj(q) ℓi,m − ℓ[i+1],m. By substituting (17) and (18) in (14) and

by expanding the summation
∑

L∈Ld
, we obtain

Tr E
X
[Tp

d] =
1

rp

∑

q∈Q

∑

ℓ1∈L1

· · ·
∑

ℓd∈L1

k(q)∏

j=1

d∏

m=1

δ(cjm)

=
1

rp

∑

q∈Q

d∏

m=1


 ∑

ℓm∈L1

k(q)∏

j=1

δ(cjm)




=
1

rp

∑

q∈Q


 ∑

ℓ∈L1

k(q)∏

j=1

δ(cj)




d

(19)

wherecj =
∑

i∈Pj(q) ℓi − ℓ[i+1]. For any givenq ∈ Q, the expression

ζM(q) =
∑

ℓ∈L1

k(q)∏

j=1

δ(cj) (20)

is a polynomial inM , since it represents the number of points with integer coordinates contained in the

hypercube[−M, . . . ,M ]p and satisfying thek(q) constraints:

cj =
∑

i∈Pj(q)

ℓi − ℓ[i+1] = 0 (21)

for j = 1, . . . , k(q). In Appendix A, we show that one of these constraints is always redundant and that the

number of linearly independent constraints is exactly equal to k(q)−1. As a consequence, the polynomial

ζM (q) has degreep − k(q) + 1, and, for large values ofM , we haveζM (q) = O((2M + 1)p−k(q)+1).
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Now, using (19) and (20), the limit in (13) is given by

E[λp
d,β] = lim

M,r→+∞
β

∑

q∈Q

ζM (q)d

rp(2M + 1)d
(22)

Equation (22) can be further simplified by considering that there existr!/(r − k(q))! vectorsq ∈ Q
generating a given partition ofP made ofk(q) subsets, or, equivalently, a pathω of lengthp with k(q)

distinct labels.

Let Ωp be the set of vectorsω, each corresponding to a distinct partition ofP. Also, let us writek(q)

andζM (q) as functions of the partition induced byq, i.e., as functions ofω. Then, we obtain:

E[λp
d,β ] = lim

M,r→+∞
β

∑

ω∈Ωp

∑

q⇒ω

ζM (ω)d

rp(2M + 1)d

(a)
= lim

M,r→+∞
β

∑

ω∈Ωp

ζM (ω)d r!

(r − k(ω))! rp (2M + 1)d
(23)

where

• the notation
∑

q⇒ω
represents the sum over all vectorsq generating a given pathω,

• the equality(a) holds because the number of vectorsq generating a givenω is r!/(r − k(ω))!.

Note that, for larger, r!/(r − k(ω))! = rk(ω) + O(rk(ω)−1). Also, sinceζM (ω) is a polynomial inM

of degreep− k(ω) + 1, for large values ofM we have:ζM (ω) = v(ω)(2M + 1)p−k(ω)+1 + O((2M +

1)p−k(ω)), wherev(ω) is the coefficient of degreep − k(ω) + 1 of ζM(ω). Therefore, taking the limit,

we obtain:

E[λp
d,β ] =

∑

ω∈Ωp

v(ω)dβp−k(ω) =

p∑

k=1

βp−k
∑

ω∈Ωp,k

v(ω)d (24)

whereΩp,k ⊆ Ωp is the subset ofΩp containing paths withk(ω) distinct labels, and

v(ω) = lim
M→+∞

ζM (ω)

(2M + 1)p−k(ω)+1
(25)

Note that the coefficientv(ω) represents the volume of theconvex polytopedescribed by the constraints

in (21), when the variablesℓi are considered as real and limited to ap-dimensional hypercube of volume

1. As a consequence, we have:0 ≤ v(ω) ≤ 1.

Equation (24) provides a closed-form expression of the moment E[λp
d,β], as a polynomial inβ of degree

p − 1. Again, for the sake of clarity, we give an example below.
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Example 3: Let p = 6 andq = [4, 9, 5, 5, 4, 3]. We haveω = [1, 2, 3, 3, 1, 4], and the partition

of P is {{1, 5}, {2}, {3, 4}, {6}}. Then, the set ofk(ω) = 4 constraints (as in (21)) are given

by:

ℓ1 + ℓ5 = ℓ2 + ℓ6, ℓ2 = ℓ3,

ℓ3 + ℓ4 = ℓ4 + ℓ5, ℓ6 = ℓ1

The last equation is redundant since can be obtained from thefirst three constraints.

Simplifying, we obtainℓ1 = ℓ6, andℓ2 = ℓ3 = ℓ5. Since each variableℓi ranges from−M to

M , the number of integer solutions satisfying the constraints is exactlyζM (ω) = (2M + 1)3,

and thenv(ω) = limM→+∞
ζM (ω)

(2M+1)p−k(ω)+1 = 1.

Next, in order to computeE[λp
d,β], we need:

• to enumerate the partitions, i.e., the vectorsω ∈ Ωp,k, for eachk = 1, . . . , p (see Section V-B);

• to compute the coefficientsv(ω), for anyω ∈ Ωp,k andk = 1, . . . , p (see Section V-C).

B. Partitions enumeration

We notice thatΩp represents the set of partitions of ap-element set, thus it has cardinality|Ωp| = B(p),

whereB(p) is thep-th Bell numberor exponential number[31]. Furthermore, the subsetΩp,k ⊆ Ωp has

cardinalityS(p, k), which is aStirling number of the second kind[32] given by:

S(p, k) =
1

k!

k∑

i=0

(−1)i
(

k

i

)
(k − i)p

with B(p) =
∑p

k=1 S(p, k).

C. Computation of the coefficientsv(ω)

The last step required for the computation ofE[λp
d,β] is the evaluation of the coefficientsv(ω), for

everyω ∈ Ωp. We have the following Lemma:

Lemma 5.1:For anyω ∈ Ωp (or, equivalently, any partition ofP) and any arbitrary integern, with

n = 1, . . . , k(ω), the coefficientv(ω) in (25) is given by:

v(ω) =

∫

Rk(ω)−1

p∏

i=1

sinc
(
yωi

− yω[i+1]

)
|yn=0 dyn (26)

where
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• yn = [y1, . . . , yn−1, yn+1, . . . , yk(ω)]
T,

• sinc(y) =
sin(πy)

πy
.

Proof: The proof can be found in Appendix B.

D. A practical method for the moments computation

Equation (26) in Section V-C shows that the computation ofE[λp
d,β ] requires the evaluation ofB(p)

integrals. However,B(p) is very large even for smallp, e.g.,B(10) = 115975 andB(20) ≈ 5 · 1013.

The computational complexity can be reduced by recursivelyapplying the simplification rules defined

in the following Lemma:

Lemma 5.2:Let

• ω = [ω1, . . . , ωp] be the path in a tree of depthp, corresponding to the partition ofP into k subsets;

• P1, . . . ,Pk be the subsets ofP = {1, . . . , p} defined as in (16);

• i ∈ Pj :

• ω
′ be the path obtained fromω by removingωi.

We have the following rules:

1) if Pj has cardinality 1 (i.e.,Pj is a singleton) or

2) if Pj contains adjacencies (in the circular sense), i.e., bothi and [i + 1] ∈ Pj ,

thenv(ω) = v(ω′)

Proof: The proof is a direct consequence of Lemma 5.1 and can be foundin Appendix C.

Table I shows two examples of how the rules described in Lemma5.2 can be applied. Example 1 in the

Table assumesp = 6 andω = [1, 2, 3, 2, 2, 1]. At step 1, we note that the third element (i = 3) of ω is a

singleton, then, by applying rule 1, we can remove it from thepath. At step 2, we find that inω there

are some adjacencies, hence we apply twice rule 2 (steps 2 and3). At step 4, the second element ofω

is a singleton, and we remove it by applying rule 1. Eventually, at step 7, the pathω is empty (i.e., has

sizep = 0) and, thus, the corresponding coefficient isv(ω) = 1 (E[λ0
d,β] = E[1] = 1).

Example 2 in the Table assumesp = 6 andω = [1, 2, 3, 1, 2, 1]. After removing a singleton (step 1)

and an adjacency (step 2), the remaining path cannot be further reduced. Then, to compute the coefficient

v(ω), we need to apply directly Lemma 5.1 on the pathω = [1, 2, 1, 2]. We obtain:

v(ω) =

∫ +∞

−∞

sinc(y1 − y2) sinc(y2 − y1)

·sinc(y1 − y2) sinc(y2 − y1) |y2=0 dy1

=

∫ +∞

−∞

sinc(y1)
4 dy1 =

2

3
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TABLE I

EXAMPLE OF COMPLEXITY REDUCTION USING THE RULES DESCRIBED INLEMMA 5.2

Example 1 Example 2

Step ω Rule i ω Rule i

1 [1,2,3,2,2,1] 1 3 [1,2,3,1,2,1] 1 3

2 [1,2,2,2,1] 2 2 [1,2,1,2,1] 2 5

3 [1,2,2,1] 2 2 [1,2,1,2]

4 [1,2,1] 1 2

5 [1,1] 2 2

6 [1] 1 1

7 []

v(ω) = 1 v(ω) = 2/3

In the following example, Lemmas 5.1 and 5.2 are exploited toexplicitly computeE[λ4
d,β].

Example 4: Let us considerp = 4. The total number of partitions ofP = {1, 2, 3, 4} is equal

to B(4) = 15. Considering the tree of depthp, we apply to each path the rules of Lemma 5.2,

and we find that 14 paths (partitions) out of 15 reduce to the empty path, thus contributing

with v(ω) = 1. The only path that cannot be further reduced isω = [1, 2, 1, 2]. Thus, applying

Lemma 5.1 withn = 2, we obtainv(ω) = 2/3. From (24) and considering all contributions,

we obtain:

E[λ4
d,β] = β3 +

(
6 + (2/3)d

)
β2 + 6β + 1.

VI. CONVERGENCE TO THEMARČENKO-PASTUR DISTRIBUTION

In Section V, we have shown that the moments of the asymptoticeigenvalues ofTd are polynomials

in β, given by (24). In particular, thep-th momentE[λp
d,β] has degreep − 1 and is given by the sum of

B(p) positive contributions of the formv(ω)dβp−k(ω). Since0 < v(ω) ≤ 1 andβ > 0, for any d, the

following inequality holds:

E[λp
d+1,β] ≤ E[λp

d,β ]

i.e., for any givenp andβ, the moments of the asymptotic eigenvalues decrease as the field dimension

increases. The seriesE[λp
d,β], as a function ofd, is positive and monotonically decreasing, thus it converges
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to:

E[λp
∞,β] = lim

d→+∞
E[λp

d,β] (27)

Lemma 6.1:The momentsE[λp
∞,β] are the Narayana polynomials, given by

E[λp
∞,β] =

p∑

k=1

T (p, k)βp−k (28)

whereT (p, k) = 1
k

(p−1
k−1

)( p
k−1

)
are theNarayana numbers[34], [35]. Moreover, the random variableλp

∞,β

follows the Marčenko-Pastur distribution [6] with pdf (see Figure 2):

f∞,β(x) =

√
(c1 − x)(x − c2)

2πxβ
(29)

wherec1, c2 = (1 ±√
β)2, 0 < β ≤ 1, c2 ≤ x ≤ c1.

Proof: The proof is given in Appendix D.
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Fig. 2. Marčenko-Pastur distribution

In the following, we apply our findings to the study of the LMMSE of a reconstructed multidimensional

field; in particular, we exploit the Marčenko-Pastur distribution to compute the expectation in (11).
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Fig. 3. MSE of the reconstructed field ford = 1 and varying values ofβ. Comparison between the MSE asymptotic value

(11) and the fully analytical expression derived using the Marčenko-Pastur distribution (30)

VII. STUDY OF THE RECONSTRUCTION QUALITY THROUGH THEMARČENKO-PASTUR DISTRIBUTION

Recall that the MSE provided by the LMMSE filter is [5]:

MSELMMSE
∞ = E

λd,β

[
αβ

λd,β + αβ

]

whereλd,β is distributed as the asymptotic eigenvalues ofTd, with pdf fd,β(x).

By using the Marčenko-Pastur distributionf∞,β instead offd,β, we have:

MSE∞ = E
λ∞,β

[
αβ

λ∞,β + αβ

]
=

∫ c1

c2

αβf∞,β(x)

x + αβ
dx

=
2β − θ +

√
θ2 − 4β

2β
(30)

whereθ = 1 + β(1 + α).

Equation (30) provides an approximation to theMSE∞, which, as shown in the following plots, can

be exploited to derive the quality of the reconstructed field, given a finited.

We first considerd = 1 and compare in Figure 3 the expression of theMSE∞ as in (11) (solid

lines) with the one obtained by using the Marčenko-Pastur distribution (dashed lines). The results are
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Fig. 4. MSE of the reconstructed field, forβ = 0.4 andd = 1, 2, 3. Comparison between the MSE asymptotic value (11) and

the fully analytical expression derived using the Marčenko-Pastur distribution (30)

presented as functions of the SNRm and for different values ofβ. We computed (11) by averaging over

the eigenvalues of 200 realizations of the matrixT1, with M = 150. The plot shows that, for small

values ofβ, the Marčenko-Pastur distribution (30) yields an excellent approximation to theMSE∞,

already ford = 1. Instead, for values ofβ greater than 0.2, the expression in (30) fails to provide a valid

approximation.

However, it is interesting to notice that, ford > 1, it is possible to obtain an accurate approximation of

the MSE∞ using the Marčenko-Pastur distribution, even for large values ofβ. This is shown by Figures

4 and 5, which plot the results obtained through (11) and (30)for β equal to 0.4 and 0.8, respectively.

The results are presented as the SNRm varies and for different values of the field dimensiond.

Looking at Figure 4, we note that our approximation is tight for d ≥ 2, while Figure 5 shows that,

whend = 3, we still get a fairly good approximation forβ as large as0.8.
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Fig. 5. MSE of the reconstructed field, forβ = 0.8 andd = 1, 2, 3. Comparison between the MSE asymptotic value (11) and

the fully analytical expression derived using the Marčenko-Pastur distribution (30)

VIII. C ONCLUSIONS

We considered a large-scale wireless sensor network sampling a multidimensional field, and we

investigated the mean square error (MSE) of the signal reconstructed at the sink node. We noticed that

an analytical study of the quality of the reconstructed fieldcould be carried out by using the eigenvalue

distribution of the matrix representing the sampling system. Since such a distribution is unknown, we

first derived a closed-form expression of the distribution moments. By using this expression, we were

able to show that the eigenvalue distribution of the reconstruction matrix tends to the Marčenko-Pastur

distribution as the field dimension tends to infinity. We applied our results to the study of the MSE of the

reconstructed field, when linear filtering is used at the sinknode. We found that, by using the Marčenko-

Pastur distribution instead of the actual eigenvalue distribution, we obtain a close approximation to the

MSE of the reconstructed signal, which holds for field dimensions d ≥ 2.

We believe that our work is the basis for an analytical study of various aspects concerning the

reconstruction quality of multidimensional sensor fields,and, more generally, of irregularly sampled
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signals.

APPENDIX A

THE CONSTRAINTS

Let us consider a vector of integersq of sizep partitioning the setP = {1, . . . , p} in k subsetsPj ,

1 ≤ j ≤ k, and the set ofk constraints (21). We first show that one of these constraintsis always

redundant.

A. Redundant constraint

Choose an integerj, 1 ≤ j ≤ k. Summing up all constraints except for thej-th, we get:

k∑

h=1
h 6=j

ch =

k∑

h=1

ch − cj =
∑

i∈P

ℓi − ℓ[i+1] − cj = −cj

which gives thej-th constraint since
∑

i∈P ℓi − ℓ[i+1] = 0. Thus, one of the constraints in (21) is always

redundant. Next, we show that the remainingk − 1 constraints are linearly independent.

B. Linear independence

The k constraints in (21) can be arranged in the form:Wℓ = 0 with ℓ = [ℓ1, . . . , ℓp]
T andW being

a k × p matrix defined as

W = W′ − W′′ (31)

where

(W′)j,i =





+1 i ∈ Pj

0 otherwise

andW′′ is obtained fromW′ by circularly shifting the rows to the right by one position.Since one of

the constraints (21) is redundant, the rank ofW is: ρ(W) ≤ k − 1. Now we prove that the rank ofW

is equal tok − 1.

Since the subsetsPj have empty intersection, the rows ofW′ are linearly independent; hence,W′

has rankk. Also, W′′ is obtained fromW′ by circularly shifting the rows by one position to the right,

thus W′′ can be written asW′′ = W′S whereS is the p × p right-shift matrix [36], i.e., the entries

of the i-th row of S are zeros except for an entry equal to 1 at position[i + 1]. As a consequence,

W = W′ −W′S = W′(Ip −S) where the rows of the matrixIp −S are obtained by circularly shifting
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the vector[+1,−1, 0, . . . , 0] and thus has rankρ(Ip − S) = p − 1. Hence, using the properties of the

rank of matrix products reported in [36], we have

ρ(W) = ρ(W′(Ip − S)) ≥ ρ(W′) + ρ(Ip − S) − p = k − 1

We recall that the system of linear equationsWz has a finite number of integer solutions bounded in

[−M, . . . ,M ]d. The number of solutions decreases asρ(W) increases.

APPENDIX B

PROOF OFLEMMA 5.1

Proof: Using (20) and (25), we obtain:

v(ω) = lim
M→+∞

1

(2M + 1)p−k(ω)+1

∑

ℓ∈L1

k(ω)∏

j=1

δ(cj)

We first notice that
∏k(ω)

j=1 δ(cj) = δ(Wℓ) where thek(ω) × p matrix W is defined in Appendix A

andδ(Wℓ) is a multidimensional Kronecker delta [33]. Since the rank of W is ρ(W) = k(ω)− 1 (see

Appendix A), thenδ(Wℓ) defines a subspace ofZ
p with p−k(ω)+1 dimensions. Therefore, considering

that ℓ is a vector of integers with entries ranging in the interval[−M, . . . ,M ] and taking the limit for

M → ∞, we obtainv(ω) =
∫
[−1/2,1/2)p δd (Wz) dz wherez ∈ R

p and the functionδd represents the

Dirac delta. We have thatδd(Wz) can be factorized as

δd(Wz) =

k(ω)∏

j=1

δd(r
T
j z) (32)

whererT
j is thej-th row ofW. As already shown in Appendix A, one of the constraints (21) is redundant

and, hence, one of the factors in the right hand side of (32), say then-th, must not be included in the

product. Now, moving to the Fourier transform domain, we canwrite: δd(r
T
j z) =

∫ +∞

−∞
exp(j2πyrT

j z) dy.

Therefore,

v(ω) =

∫

[−1/2,1/2)p

k(ω)∏

j=1,j 6=n

δd(r
T
j z) dz

=

∫

[−1/2,1/2)p

k(ω)∏

j=1,j 6=n

∫ +∞

−∞

ej2πyjr
T
j z dyj dz

=

∫

[−1/2,1/2)p

∫

Rk−1

ej2π
Pk(ω)

j=1,j 6=n yjr
T
j z dyn dz

April 22, 2008 DRAFT



23

whereyn = [y1, . . . , yn−1, yn+1, . . . , yk(ω)]
T. Integrating first with respect toz, we get

v(ω) =

∫

Rk−1

∫

[−1/2,1/2)p

ej2π
Pp

i=1 ziy
T
nwi dzdyn

=

∫

Rk−1

∫

[−1/2,1/2)p

p∏

i=1

ej2πziy
T
nwi dzdyn

=

∫

Rk−1

p∏

i=1

∫ 1/2

−1/2
ej2πziy

T
nwi dzi dyn

=

∫

Rk−1

p∏

i=1

ejπyT
nwi sinc(yT

nwi) dyn

=

∫

Rk−1

ejπyT
n

Pp

i=1 wi

p∏

i=1

sinc(yT
nwi) dyn

wherewi is thei-th column ofW, taken after removing itsn-th row. By definition, thej-th rows ofW′

and ofW′′ contain bothp− |Pj | “0” and |Pj | “+1”. SinceW = W′ −W′′, we have
∑p

i=1 wi = 0 and

v(ω) =
∫

Rk−1

∏p
i=1 sinc(yT

nwi) dyn. Notice that, by definition ofW (see (31)),yT
nwi = yj − yj′ |yn=0

if i ∈ Pj and [i + 1] ∈ Pj′ . Moreover, by the definition in (16), we haveyj = yωi
when i ∈ Pj. Thus,

v(ω) =

∫

Rk−1

p∏

i=1

sinc(yωi
− yω[i+1]

) |yn=0 dyn

APPENDIX C

PROOF OFLEMMA 5.2 (SIMPLIFICATION RULES)

LetPj be a singleton withPj = i andωi = j. We first notice that, sincePj is a singleton,[i−1], [i+1] /∈
Pj . By applying Lemma 5.1 with an arbitraryn 6= j, we have

v(ω) =

∫

Rk−1

p∏

h=1

sinc(yωh
− yω[h+1]

) |yn=0 dyn

=

∫

Rk−1

p∏

h=1
h 6=i

h 6=[i−1]

sinc(yωh
− yω[h+1]

)sinc(yω[i−1]
− yωi

)

·sinc(yωi
− yω[i+1]

) |yn=0 dyn
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We now integrate with respect toyj , with j = ωi and we obtain

v(ω) =

∫

Rk−2

p∏

h=1
h 6=i

h 6=[i−1]

sinc(yωh
− yω[h+1]

)

·
∫

R

sinc(yω[i−1]
− yj)sinc(yj − yω[i+1]

) |yn=0 dyj dy′
n

=

∫

Rk−2

p∏

h=1
h 6=i

h 6=[i−1]

sinc(yωh
− yω[h+1]

)

·sinc(yω[i−1]
− yω[i+1]

) |yn=0 dy′
n

=

∫

Rk−2

p−1∏

h=1

sinc(yω′
h
− yω′

[h+1]
) |yn=0 dy′

n = v(ω′)

wherey′
n andω

′ have been obtained fromyn andω by removing theirj-th andi-th element, respectively.

Obviouslyy′
n has sizek−1 andω

′ has sizep−1. LetPj be such that:Pj = i, [i + 1], i.e.,ωi = ω[i+1] = j.

Then,

v(ω) =

∫

Rk−1

p∏

h=1

sinc(yωh
− yω[h+1]

) |yn=0 dyn

=

∫

Rk−1

p∏

h=1
h 6=i

sinc(yωh
− yω[h+1]

)

·sinc(yωi
− yω[i+1]

) |yn=0 dyn

=

∫

Rk−1

p∏

h=1
h 6=i

sinc(yωh
− yω[h+1]

)sinc(yj − yj) |yn=0 dyn

=

∫

Rk−1

p∏

h=1
h 6=i

sinc(yωh
− yω[h+1]

) |yn=0 dyn

=

∫

Rk−1

p−1∏

h=1

sinc(yω′
h
− yω′

[h+1]
) |yn=0 dyn = v(ω′)

whereω
′ has been obtained fromω by removing itsi-th element.

APPENDIX D

PROOF OFLEMMA 6.1

In order to prove Lemma 6.1, we first note thatΩp,k may contain both crossing and non-crossing

partitions [37].
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a) Non-crossing partitions:Every non-crossing partition contains at least a singletonor a subset

with adjacencies, and therefore can be reduced by using the rules in Lemma 5.2. After reduction, the

resulting partition is still non-crossing, thus it can be further reduced till the empty set is reached. It

follows that the non-crossing partitionω ∈ Ωp,k contributes to the expression ofE[λp
p,k] with a coefficient

v(ω) = 1.

b) Crossing partitions:Recall that, in general, the coefficientv(ω) defined in (26) can be obtained

by counting the solutions of the system of equations:Wℓ = 0 where thek(ω) × p matrix W contains

the coefficients of thek(ω) constraints in (21).

If ω ∈ Ωp,k is a crossing partition, then

• k(ω) ≥ 2 (by definition, a partition withk(ω) = 1 is always non-crossing)

• it contains at least two subsetsPj andPj′ , with j 6= j′, which are crossing.

Some crossing partitions can be reduced by applying the rules in Lemma 5.2 but, even after reduction,

they remain crossing.

Let us now focus on the crossing subsetPj of a partitionω which has been reduced by applying the

rules in Lemma 5.2. Without loss of generality, we assume that |Pj | = h, i.e. the partitionPj containsh

elements withh ≥ 2 sincePj is not a singleton. Then, by definition of the matrixW (see Appendix A)

its j-th row, rT
j , containsh entries with value 1,h entries with value−1 and p − 2h zeros. We then

build the 2 × p matrix W̃ asW̃ = [rj ,−rj]
T. Notice thatW̃ has rank 1 and the system of equations

W̃ℓ = 0 contains the constraints induced by a partitionω̃ = [1, 2, . . . , 1, 2] with 2h entries. Since the

system of equations̃Wℓ = 0 contains a reduced set of constraints with respect toWℓ = 0 and, thus, a

larger number of solutions, it follows thatv(ω) ≤ v(ω̃).

It is straightforward to show that for a partition such asω̃, with k(ω̃) = 2, the coefficientv(ω̃) is

given by Lemma 5.1 asv(ω̃) =
∫

R
sinc(y)2h dy. This is a decreasing function ofh and sinceh ≥ 2 we

have:

v(ω̃) =

∫

R

sinc(y)2h dy ≤
∫

R

sinc(y)4 dy =
2

3

Therefore, we conclude thatv(ω) ≤ v(ω̃) < 1.
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c) Crossing and non-crossing partitions:Let Ωc
p,k,Ω

n
p,k ⊂ Ωp,k be, respectively, the set of crossing

and non-crossing partitions ofΩp,k, with Ωc
p,k ∩ Ωn

p,k = ∅ andΩc
p,k ∪ Ωn

p,k = Ωp,k. Then,

E[λp
∞,β] = lim

d→+∞

p∑

k=1

βp−k
∑

ω∈Ωp,k

v(ω)d

= lim
d→+∞

p∑

k=1

βp−k


 ∑

ω∈Ωc
p,k

v(ω)d +
∑

ω∈Ωn
p,k

v(ω)d




(a)
=

p∑

k=1

βp−k|Ωn
p,k|

where the equality(a) is due to the fact that for non-crossing partitionsv(ω) = 1, while for crossing

partitions v(ω) < 1 and, hence,limd→+∞ v(ω)d = 0. In [38], it can be found that the number of

non-crossing partitions of sizek in a p-element set is given by the Narayana numbersT (p, k) = |Ωn
p,k|

and thereforeE[λp
∞,β] =

∑p
k=1 T (p, k)βp−k are the Narayana polynomials. In [6], it is shown that the

Narayana polynomials are the moments of the Marčenko-Pastur distribution.

APPENDIX E

PROOF OF(11)

We show that when the LMMSE filter is used, the expression of the asymptotic MSE is given by (11).

Indeed, by using (10), (7), (8), and (9) we have:

MSE∞ = lim
M,r→+∞

β

1

σ2
a(2M + 1)d

E
X

E
a,n

[
‖A−1

d Gdp− a‖2
]

whereAd = Rd +αI andRd = GdG
†
d. Substituting (4) in the above expression and assumingE[aa†] =

σ2
aI andE[nn†] = σ2

nI, we get

1

σ2
a

E
a,n

[
‖A−1

d Gdp − a‖2
]

= Tr

{
(A−1

d Rd − I)(A−1Rd − I)† + αA−1
d RdA

−1
d

}

= Tr
{
α(Rd + αI)−1

}
= Tr

{
αβ(Td + αβI)−1

}

whereTd = βRd. Let us consider an analytic functiong(·) in R
+. Let X = UΛU† be a random positive

definite Hermitiann × n matrix, whereU is the eigenvectors matrix ofX andΛ is a diagonal matrix

containing the eigenvalues ofX. By using the result for symmetric matrices in [39, Ch. 6] combined

with the result in [40, pag. 481], we have:limn→∞
1
nTr E[g(X)] = E

λ
[g(λ)] where the random variable
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λ is distributed as the asymptotic eigenvalues ofX. It follows that

lim
M,r→+∞

β

Tr E
X

[
αβ(Td + αβI)−1

]

(2M + 1)d
= E

λβ,d

[
αβ

λβ,d + αβ

]
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