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Abstract

We focus on a multidimensional field with uncorrelated spent and study the quality of the
reconstructed signal when the field samples are irregulsphced and affected by independent and
identically distributed noise. More specifically, we apfllyear reconstruction techniques and take the
mean square error (MSE) of the field estimate as a metric tuaeathe signal reconstruction quality.
We find that the MSE analysis could be carried out by using kbsed-form expression of the eigenvalue
distribution of the matrix representing the sampling systéJnfortunately, such distribution is still
unknown. Thus, we first derive a closed-form expression ef distribution moments, and we find
that the eigenvalue distribution tends to the MarCenkstiadistribution as the field dimension goes to
infinity. Finally, by using our approach, we derive a tighpagximation to the MSE of the reconstructed
field.

. INTRODUCTION

We address the important issue of reconstructing a muléidsional signal from a collection of samples

arXiv:0804.3255v1 [cs.IT] 21 Apr 2008

that are noisy and not uniformly spaced. As a case study, weider a wireless sensor network for
environmental monitoring, where the nodes sensing the ipilyphenomenon (hereinafter also called
field) are randomly deployed over the area under observalibe sensors sample @&dimensional

spatially finite physical field, wheré may take into account spatial dimensions as well as the teahpo
dimension. Examples of such fields are pressure or temperatn a 4-dimension domain, i.e., three
spatial coordinates plus the time dimension. A spatiallgdiphysical field is not bandlimited, however it
admits an infinite Fourier series expansion. Here, we censidinite approximation of the physical field

obtained by truncating such series, assuming that theibatitm of the truncated terms is negligible.
This work was supported by MIUR through the MEADOW project
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In our case study, we assume that the measured samplesrefetrad from the sensors to a common
data-collecting unit, the so-called sink node, which is rarge of reconstructing the field. Distributed
systems, where in-network processing, is performed areobtlie scope of this work. We do not deal
with issues related to information transport and, thus, ssume that all samples are correctly received
at the sink node. The field samples, however, are corrupteatditive i.i.d. noise, due to quantization,
round-off errors or quality of the sensing device. Furthemn the sampling points are known at the sink
node, becausé) either sensors are located at pre-defined positions or plusition can be estimated
through a localization technique [1], ar{d) the sampling time is either periodic or included in the
information sent to the sink.

Several efficient and fast algorithms have been proposediteerically reconstruct or approximate
a signal in such setting, which amount to the solution of adinsystem (see [2], [3] and references
therein). A widely used technique consists in processisgtnsors’ measures by means of a linear filter,
which is a function of the system parameters known at the. $Wf&observe that the following two major
factors affect the linear reconstruction:

(i) the given machine precision, which may prevent the recoostm algorithm from performing

correctly and may lead to a non-negligible probability aamstruction failure [3],

(i) the noise level affecting the sensors’ measurements.

In the latter case, a measure of reconstruction accuracywén gy the mean square error (MSE) of
the field estimate. In [4], [5], we have found that these isstmuld be studied by using the eigenvalue
distribution of the reconstruction matrix; however, obtag such a distribution is still an open problem.
In this work, we first extend the system model and the problemmfilation presented in [5] to the case
of multidimensional fields (SectianIl). Then, we derive lased-form expression of the moments of
the eigenvalue distribution, through asymptotic analySisction V). By using the moments expressions,
we prove that the eigenvalue distribution of the matrix esgnting the sampling system tends to the
Marcenko-Pastur distribution [6] as the field dimensibr oo (Section[V]).

We apply our results to the study of the MSE of the field estimathen the sensors measurements
are noisy and the reconstruction at the sink is performealutiir linear filtering.

We generalize the MSE expressions to the multidimensioasé ¢with finited), and we show that,
by using the Marcenko-Pastur distribution instead of theua eigenvalue distribution, we obtain an
approximation to the MSE of the reconstructed field whichasywtight ford > 3 (SectionVII).

Before providing a detailed description of our analysisthie next section we discuss some related

studies and highlight our main contributions with respecptevious work.
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[I. RELATED WORK AND MAIN CONTRIBUTIONS

Relevant to our work is the literature on spectral analysisere, however, several studies deal with
regularly sampled signals (e.g., [7] and references thgrdin excellent guide to irregular sampling is
[8], which presents a large number of techniques, algostrand applications. Reconstruction techniques
for irregularly or randomly sampled signals can be found3j [9], [10], just to name few. In particular,
Feichtinger and Grochenig in [10] provide an error analgdian iterative reconstruction algorithm taking
into account round-off errors, jitters, truncation errared aliasing. From the theoretical point of view,
irregular sampling has been studied in [3], [9]-[14] ancerehces therein.

In the context of sensor networks, efficient techniques fatial sampling are proposed in [15], [16].
In particular, in [16], an adaptive sampling is describetijol allows the central data-collector to vary
the number of active sensors, i.e., samples, accordingetaleékired resolution level. Data acquisition is
also studied in [17], where the authors consider a unidimeasfield, uniformly sampled at the Nyquist
frequency by low precision sensors. The authors show tleahtimber of samples can be traded-off with
the precision of sensors. The problem of the reconstruatfan bandlimited signal from an irregular set
of samples at unknown locations is addressed in [18]. Thiifierent solution methods are proposed,
and the conditions for which there exist multiple soluti@nsa unique solution are discussed. Differently
from [18], we assume that the sink can either acquire or eséirthe sensor locations and that sensors
are randomly deployed.

The field reconstruction at the sink node with spatial andptemal correlation among sensor measures
is studied, for instance, in [19]—-[23]. Other interestingdses can be found in [24], [25], which address
the perturbations of regular sampling in shift-invariapases [24] and the reconstruction of irregularly
sampled images in presence of measurement noise [25].

We point out that our main contribution with respect to poe work on signal sampling and
reconstruction is the probabilistic approach we adopt tyae the quality level of a signal reconstructed
from a set of irregular, noisy samples. Our analysis, howemgplies to sampling systems where the
field reconstruction is performed in a centralized mannielfy, we highlight that our previous work [5]
assumes that sensors are uniformly distributed over thigapaservation interval and may be displaced
around a known average location. The effects of noisy measamd jittered positions are analyzed when
linear reconstruction techniques are employed. Howevdy, the unidimensional case is studied and
semi-analytical derivations of the MSE of the reconstrddield are obtained. In [26], instead, sensors

are assumed to be fixed, and the objective is to evaluate tHermpance of a linear reconstruction
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technigue in the presence of quasi-equally spaced sengmrtta

A. Main results

The goal of this work is to provide an analytical study on tkeanstruction quality of a multidi-
mensional physical field, with uncorrelated spectrum. Thilfsamples are (i) irregularly spaced, since
they are gathered by a randomly deployed sensor network igndffécted by i.i.d. noise. The sink
node receives the field samples and runs the reconstrudgoritm in a centralized manner. Our major
contributions with respect to previous work are as follows.

1. Given ad-dimensional problem formulation, we obtain analyticgbesssions for the moments of the
eigenvalue distribution of the reconstruction matrix. dsthe expressions of the moments, we show
that the eigenvalue distribution tends to the MarCenksttadistribution [6] as the field dimension
d — o0.

2. We apply our results to the study of the quality of a recwesed field and derive a tight approxi-

mation to the MSE of the estimated field.

I11. PRELIMINARIES

We first present the multidimensional formulation of ouraestruction problem. Then, we give some
background on linear reconstruction techniques and gkreta the multidimensional case some results
previously obtained in the unidimensional case [5]. Finalte highlight the main steps followed in our

study.

Notation: Lower case bold letters denote column vectors, while upase bold letters denote matrices.
We denote theh, k)-th entry of the matrixX by (X) x, the transpose ot by x*, and the conjugate
transpose ok by x'. The identity matrix is denoted iy Finally, E[z] is the average af and subscripts

to the average operator specify the variable with respeuathich the average is taken.

A. Irregular sampling of multidimensional signals

Let us consider al-dimensional, spatially-finite physical field = 1), wherer sensors are located
in the hypercubé? = {x|x € [0,1)?} and measure the value of the field. We assume that the sensor
sampling points are known. At first, we consider that they @geterministic, then we will assume that

they are i.i.d. random variables uniformly distributed lve thypercubé.
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When observed over a finite regiondalimensional physical field(x) with finite energyEs admits

an infinite d-dimensional Fourier series expansion with coefficiénpisuch thatF; = ZZO_‘_)_ L= —o0 |ael|?
wheref = [(1,...,44] is a vector of integers ang},,, m = 1,...,d represents the index of the expansion

along them-th dimension. We truncate the expansiorfd + 1 terms per dimension wher® is such
that 3", 50 lael? + 350 , _ iy |ae> < E, Therefore, one can think of/ as the approximate
one-sided bandwidth (per dimension) of the field, which carapproximated over the finite regidm
as

s(x) = (2M + 1)_d/2 Z al,(g)ejzﬂxTz Q)
£

where the tern(2M +1)~%2 is a normalization factor ani, represents d-dimensional sum over the

vector£, with £, = —M, ..., M. Also, a, s = ae and the function

d
v(€) = > (2M + 1) e,

m=1
—% <v) < +% maps the vectof onto a scalar index. Note that, whilg has a
vectorial indexg,, gy has a scalar index and it has been introduced to simplify tit&tion. As an example,
for d =2 andM = 1, we havev(€) = 301+ 0 ands(zy,z2) = £ 3, __ 1 S0 | agg,qp, @@ 0F0),
Let X = {x1,...,%x,}, With x, = [241,...,244]T € H, ¢=1,...,r, be the set of sampling points,
ands = [s1,...,s.]%, s, = s(x,), the values of the corresponding field samples. Followijg\@ write

the vector of field values as a function of the spectrum:
s = Gila 2

wherea is a vector of sizé2M +1)¢, whosev(£)-th entry is given by, (¢), andGy is the(2M + 1) xr
matrix:
(Ga)yeyg = (2M + 1)~ 2e7i2mx 8 3)

In general, the entries af can be correlated with covariance matfifaa’] = 02C,, and Tr{C,} =
(2M +1)4. In the following, we restrict our analysis to the class ofdéecharacterized bg[aa’] = o21.

If the sensor measurements= [p1,...,p.]T, are noisy, then the relation between sensors’ samples and
field spectrum can be written as:

p:s+n:GLa+n 4)

where the noise is represented by th&ize, zero-mean random vecigrwith covariance matrixz,[nn*] =

021,.. We define the signal-to-noise ratio on the measurSaR,, 2 o2/o? 21/a.
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B. Sampling rate

Following [5], we introduce the parametgrdefined as:

(2M + 1)¢
r

f= (5)

This parameter represents the ratio between the numberrofonics used for the field reconstruction
and the number of sensors sampling the field. In the folloyimg considers € [0, 1). Notice that for

fixed 8 and M, the number of samples exponentially increases with

C. Previous results on reconstruction quality

Given an estimata of the field spectruma, the reconstructed signal is:

(%) = (2M +1)7Y2 Y ", el (6)
£
As reconstruction performance metric, we consider the MEth® field estimate, which, for any given

set of sampling pointgt, is defined as:

E ||a - a?
a,n

(2M + 1)4

where the average is taken with respect to the subscriptetbna vectors. Note that](7) still assumes

MSEy = aEn/H 3(x) — s(x)|* dx = (7)

that the sampling points are deterministic; this assumptidl be removed later in the paper.

For linear models such akl (4), several estimation techeitpased on linear filtering are available in
the literature [27]. We employ a filteB such that the estimate of the field spectrum is given by the
linear operation

a=Bp (8)

where B is anr x (2M + 1)? matrix. In particular, we consider the linear filter providi the best
performance in terms of MSE, i.e., the linear minimum MSE (UBE) filtet [27]:
B=G/(Ry+ol)™ (9)

whereR, = GdGL.

From now on, we carry out our analysis under the assumptianttfe elements of the seX are
independent random vectors, with i.i.d. entries, unifgristributed in the hypercubX.

In [5], we have shown that a simple and effective tool to eatduthe performance of large finite

systems is asymptotic analysis. We computed the MSE bwdgttie field number of harmonics and the

INotice that when the covariance matrix afis known, the LMMSE filter generalizes (((}IlCaGd + aI)*lGLCa.
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number of samples grow to infinity, while their ratib= (2M + 1)?/r is kept constant. We observed
the validity of asymptotic analysis results, even for smalues ofM andr. Similarly, here we consider
as performance metric th@symptotic averag®SE, normalized tar2:

MSE. = lim — E[MSEx] (10)
X

M,r—+o0 O'g

where below the limit denotes the ratio which is kept constant[dIf))( the average is over all possible
realizations of the seX’. Using [7)-(9) and the above definitions, in Appendix E wevshioat, in the
case of the LMMSE:

_ af
M5B = - L\dﬁ +aﬁ} -

where )\; 3 is a random variable with probability density function (pdf;s(x), distributed as the
asymptotic eigenvalues @f; = SR, = ﬂGdGL. The subscriptd and of A indicate that the distribution
of the asymptotic eigenvalues @f; depends on both the field dimensidrand the parametes.

The matrix T, plays an important role in our analysis; in the following, wroduce some of its

properties. In the unidimensional case= 1), T; is a (2M + 1) x (2M + 1) Hermitian Toeplitz matrix

given by
to 31 s toym
t_q to s topr—1
T, =T =
t_om t—om+1 - to

where (T1)pp0 = tr—p = %Zgzlexp(—ﬂﬂ(ﬁ —xy), 0,00 = —M,...,M. Ford > 2, T, can be
defined recursively as @M + 1)% x (2M + 1)? Hermitian Block Toeplitz matrix with non Hermitian

Toeplitz blocks:

By B, -+ Baoum
T B, Bg <+ Boyo
d pu—

B_oy B_oay41 - By
where
1 _.
(Td)u(l),u(ﬂ/) = ; Ze_J2W(e—e )Xq (12)
q=1

and £,¢ € [—M,...,M]% That is, the matrixT; is composed of(2M +1)* blocks B; of size
(2M + 1)1 x (2M + 1)%7!, each including(2M + 1)2 blocks of size(2M + 1)472 x (2M + 1)%72,
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and so on. The smallest blocks have si2&/ + 1) x (2M + 1); they have the same structure as matrix
T, in the unidimensional case, however only those on the maigaial have a Hermitian structure.

Proof of this is given in [28] ford = 2; the extension to th€-dimensional case is straightforward.

V. ESTIMATION ERRORCALCULATION METHOD
The analysis detailed in the next sections consists of thewimg main steps.

(i) As a practical case, we consider the asymptotic expresgitimeoLMMSE in (11) and notice that
an analytical evaluation of the asymptotic LMMSE could bdaated by exploiting the closed-
form expression of the eigenvalue distributigiy,;(z), of the reconstruction matrix. However, such
expression is still unknown. Hence, as a first step we deralesed form expression of the moments
of \; 3, for anyd and 3, and provide an algorithm to compute them.

(i) We show that the value of the moments of the eigenvalue bligtoin decreases as the field dimension
d increases.

(i) We prove that, agd — oo, the expression of the eigenvalue distribution tends tdMhetenko-Pastur
distribution.
(iv) By using the MarCenko-Pastur distribution, we are able Iitaim a tight approximation for the

LMMSE of the reconstructed field, which holds for any finitdueof d.

V. CLOSED FORM EXPRESSION OF THE MOMENTS OF THE ASYMPTOTIC EIGENVALUE PDF

Ideally, we would like to obtain the analytical expressidrttee distributionf, g(x) of the asymptotic
eigenvalue ofl'y, for a giveng. Unfortunately, such a calculation seems to be prohibdind is still an
open problem. Therefore, as a first step, we compute theccfose expression of the momerﬂﬁ)\g’ﬁ]
of A4, for any positive integep.

In the limit for M andr growing to infinity with constanf3, the expression OIE[Afw] can be easily

obtained from the powers &F; as in [29], [30],

TR [T (13)

Aol = i —_—
Eldqs] Moo (2M + 1)
B

In Section V-A, we show tha}E[)\Z’ﬁ] is a polynomial in3, of degreep — 1 (see [(24)); the remaining

subsections describe how to compute this polynomial.
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A. Partitions

Using [12), the termTr E[T%] in (I3) can be written as
X

T”)Eé [T%] -k > (T wien)

£,

= E| D (Ta)uemien) (Td)u<ep>7u(el>]
X
LeLl,
. 1 —ji2r >0 xT (i —Lpit1))
-y I)[?[ej s M] (14)
qeQ LeLqy
whereQ = {q | a = [g1,-- @)} ¢t = 1,...,7 Lg = {L|L = [€1,....8)}, £ = [li,--,0:,]",
¢, =—M,...M and
t+1 1<i<p
[i +1] =
1 1=0p
In (I4), the average is performed over the random set ofiposit’ = {x1,...,x,}, with independent

and uniformly distributed elements. To obtain a closedrf@xpression of the distribution moments, we
rewrite [14) by using set partitioning.

Let? = {1,...,p} be the set of integers from 1 o We observe that any given vecigre Q partitions
the setP into 1 < k(q) < p disjoint non-empty subse®, (q), ..., Pr(q), whereP;, j =1,...,k(q),

is the set of indices of the entries qftaking the same valug;. That is,

Pi(a) ={i € P | ¢ =} (15)

and k(q) is the number of distinct values; taken by the entries of vectay. SubsetsP; have the
following properties
k(q)
Y Pila) =P, Pi(a)nPy(a) =0
for, j # j'. Also, we point out that, since is the number of values that the entrigscan take, there
existr!/(r — k(q))! vectorsq € Q generating a given partition @ made ofk(q) subsets. In order to

clarify the above concepts, we provide an example below.

April 22, 2008 DRAFT



10

Example 1: Let p = 6, thenP = {1,2,3,4,5,6}. Also, letq = [4,9,5,5,4, 3]. Since the
distinct values inq arev; = 3,4, 5,9, we havek(q) = 4. It follows that is partitioned into

the following subsets:

Pi(a) ={1,5} (1=¢5=4)
Pala) ={2}  (@2=9)
Ps(a) ={3,4} (g3 =aq=5)
Pi(a) = {6} (g6 =3)

Hence, the partition of induced byq is {{1,5}, {2}, {3,4},{6}}.

Next, we introduce an effective method to represent pantitiof a sefP, by building a tree of depth
p, as in Figurd L. Such a representation will allow to simptig notation in the following analysis. To
build the tree of deptlp, we proceed as follows. Each node of the tree is assignedawiétbel from
the setP = {1,...,p}, starting from the root which is labeled by 1. Each node getesin + 1 leaves,
labeled in increasing order from 1 t@ + 1, wherem is the largest label on the path from the root to
such node. Note that, at levg) any value in{1,...,p} is used to label the leaves at least once.

Then, given a tree of depth, we definew = [wy,...,w,] as a path of lengtlp from the tree’s root
to a leaf. We observe that a vecigrcan be represented as a pathn the tree of depthy. This is done
by assigning a labelj(=1,...,p) in increasing order to every distinct value @f the vector collecting
the labels is the patty corresponding to the giveq. We have that the patl, corresponding to a given
q, defines in the tree of depththe same partition of the sg as the one induced by. Indeed, given

a partition of P, the subseP; defined in [(Ib) can be rewritten as
Pj(w) ={i €P | wi=j}, (16)

i.e., as the set of integers corresponding to the depthseof-th label in the path. As a last remark,
consider the number of distinct valuesdn(i.e., the number of distinct labels in) to be equal td:(q),
and recall that the number of all possible values taken bypteéements ofq is equal tor. It follows
thatr!/(r — k(q))! differentq’s yield the same vectaw. This is in agreement with the fact that, given
P, there are’! /(r — k(q))! differentq’s generating the same partition consistingk¢f) subsets. Again,

for the sake of clarity, we give an example.
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Fig. 1. Partitions tree of depth = 4. The pathw = [1,2, 1, 1] employed in Example 2 is highlighted by using dashed lines

Example 2: Let us considep = 4 andq = [4,9,4,4]. The vectorq can be represented in
the tree of depth 4 as the path= [1,2,1,1] (i.e., the path highlighted with dashed lines in
Figure[1). Inq there are two distinct values (namely, 4 and 9), or, equitblein the path
w there are two labels (namely, 1 and 2); thef) = k(w) = 2. Label 1 appears i at
depths 1,3, and 4R, = {1, 3,4}), while label 2 appears at depth Py(= {2}). The partition
of P ={1,2,3,4} induced byq or, equivalently, byw is therefore:{{1, 3,4}, {2} }.

From the discussion above, it should be clear that consigesi partition ofP is equivalent to
considering a patv in a tree of deptlp. Hence, in the following analysis, we will refer to a padii
through its corresponding path.

We now exploit set partitioning to rewrité_({14). Since th@dam vectorsx, are independent, given
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q, the average operator in_(14) factorizes iki@) terms, i.e.,

E[ —j2m 327y xg, (&£ )}
X

k(a)
[ g frors Bt -

Each term depends on a single random vestgr Moreover, since the entries of, are independent

random variables uniformly distributed A, 1), we have:

E [e‘ﬂ“x% Sier@ li_g“m}

d d
=1 E |ePmwmon] =TT dtem) (18)
m=1""" m=1

where z,, ,, and/; ,, are them-th entries ofx, and¢;, respectively, where the functiod(-) is the
Kronecker's delta, and whei§,,, = >_;cp, (q) lim — £[i+1],m- By substituting [(17) and_(18) in[_(14) and

by expanding the summationy, . , we obtain

d
TET) = Y Y [T o(cim)

qQeQ bel, L.l j=1 m=1

) k(a) d
- Ly { ) Hacj)] (19)

wherec; = ZZGP (@ ¢; — {;41). For any givenq € Q, the expression

k(a)

=> I dcp) (20)

Ly j=1
is a polynomial inM, since it represents the number of points with integer doatds contained in the

hypercubg— M, ..., M]P and satisfying thé:(q) constraints:

i€P;(a)
forj=1,...,k(q). In Appendi{A, we show that one of these constraints is abvagundant and that the
number of linearly independent constraints is exactly etjuia(q)— 1. As a consequence, the polynomial

¢yv(q) has degree — k(q) + 1, and, for large values afZ, we have(y(q) = O((2M + 1)P~k@+1),
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Now, using [19) and (20), the limit if_(13) is given by
B = i Y e 22)
8 qeQ
Equation [[(2R) can be further simplified by considering theré existr!/(r — k(q))! vectorsq € Q
generating a given partition ¢ made ofk(q) subsets, or, equivalently, a pathof lengthp with k(q)
distinct labels.
Let 2, be the set of vectors, each corresponding to a distinct partition7f Also, let us writek(q)

and (s (q) as functions of the partition induced ly i.e., as functions ofv. Then, we obtain:

 Qu(w)?
E[Xg,6] = M}«Iinm > D a1 P 2M+1

we, q=>w
@ Cor (W) 7!
) M”l‘%n“%; (r = k(@))tr? (2M + 1) (@3)

where

« the notation)_ represents the sum over all vecteygenerating a given path,

q=w
« the equality(a) holds because the number of vectargenerating a givew is r!/(r — k(w))!.

Note that, for larger, r!/(r — k(w))! = r*«) 4 O(rk«)=1), Also, since(y, (w) is a polynomial inM
of degreep — k(w) + 1, for large values of\/ we have:(ys (w) = v(w)(2M + 1)P~F@+1 L O((2M +
1)P=k@)), wherev(w) is the coefficient of degreg — k(w) + 1 of ¢yr(w). Therefore, taking the limit,
we obtain:
EN 5l = Y w(w)ipr e = iﬁp—’f > vw)! (24)
weQ, k=1 wED,

where(, ,, C Q, is the subset of2,, containing paths withk(w) distinct labels, and

. (v (w)
v(w) = Mligl;.oo (2M _|_A/i[):0—k(w)+1 (25)

Note that the coefficient(w) represents the volume of tlinvex polytopelescribed by the constraints
in 1), when the variable§ are considered as real and limited tp-dimensional hypercube of volume
1. As a consequence, we hawex v(w) < 1.

Equation[(24) provides a closed-form expression of the nmm{a\gﬁ], as a polynomial irg of degree

p — 1. Again, for the sake of clarity, we give an example below.
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Example 3: Letp = 6 andq = [4,9,5,5, 4, 3]. We havew = [1,2, 3,3, 1,4], and the partition
of Pis {{1,5},{2},{3,4},{6}}. Then, the set of(w) = 4 constraints (as if_(21)) are given
by:

b+l =0l+1ls,  ly=1,

by + L0y = Uy + U5, bg =14

The last equation is redundant since can be obtained fromfitee three constraints.
Simplifying, we obtain/; = /s, and/y; = ¢35 = (5. Since each variablé ranges from—M to
M, the number of integer solutions satisfying the constsaisitexactly(ys(w) = (2M + 1)3,

and thenU(W) = hmM_>+oo W‘Eﬁ% =1.

Next, in order to comput@jp\gﬁ], we need:

« to enumerate the partitions, i.e., the vectorg (2, ;, for eachk =1,...,p (see Section V-B);

« to compute the coefficientsw), for anyw € Q,, andk =1,...,p (see Section V-C).

B. Partitions enumeration

We notice thaf2, represents the set of partitions op-@®lement set, thus it has cardinality,| = B(p),
where B(p) is thep-th Bell numberor exponential numbe[81]. Furthermore, the subsgt, , C €, has

cardinality S(p, k), which is aStirling number of the second kif@2] given by:

k
) = S0 (4 ey
T i=0

with B(p) = >_7_, S(p, k).

C. Computation of the coefficient$w)

The last step required for the computationKif\} 5| is the evaluation of the coefficient§w), for
everyw € ),. We have the following Lemma:
Lemma 5.1:For anyw € Q,, (or, equivalently, any partition oP) and any arbitrary integet, with

n=1,...,k(w), the coefficienw(w) in (25) is given by:

p
v(w) :/ B HSinC(ywi _yw[i+l]) ’yn:O dyn (26)

where
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* VYn = [yla <9 Yn—1,Yn+1, - - - 7yk(w)]T

: _ sin(7y)
e sindy) = p——
Proof: The proof can be found in AppendiX B. |

D. A practical method for the moments computation

Equation [(2B) in Section VAC shows that the computationEbfZ,ﬁ] requires the evaluation aB(p)
integrals. HoweverB(p) is very large even for smaj, e.g., B(10) = 115975 and B(20) ~ 5 - 10'3.
The computational complexity can be reduced by recursigpplying the simplification rules defined
in the following Lemma:
Lemma 5.2:Let
e w=|wi,...,wp] be the path in a tree of depth corresponding to the partition @t into k£ subsets;
e Py,..., P be the subsets gP = {1,...,p} defined as in[(16);
e i €Pj:
« w’ be the path obtained from by removingw;.
We have the following rules:
1) if P; has cardinality 1 (i.e.P; is asingletor) or
2) if P; contains adjacencies (in the circular sense), i.e., bathd [i + 1] € P;
thenv(w) = v(w’)

Proof: The proof is a direct consequence of Lemimd 5.1 and can be fiouAgpendix[C. |
Table[l shows two examples of how the rules described in Lefafiaan be applied. Example 1 in the
Table assumeg = 6 andw = [1,2,3,2,2,1]. At step 1, we note that the third element 3) of w is a
singleton, then, by applying rule 1, we can remove it from pla¢h. At step 2, we find that iw there
are some adjacencies, hence we apply twice rule 2 (steps 3)a’d step 4, the second elementwof
is a singleton, and we remove it by applying rule 1. Evenyuall step 7, the pattv is empty (i.e., has
sizep = 0) and, thus, the corresponding coefficienbisv) = 1 (E[)\gﬁ] =E[l] =1).

Example 2 in the Table assumgs= 6 andw = [1,2,3,1,2,1]. After removing a singleton (step 1)
and an adjacency (step 2), the remaining path cannot beefureduced. Then, to compute the coefficient

v(w), we need to apply directly Lemnia 5.1 on the path= [1,2,1,2]. We obtain:

+o0o
vw) = / sine(ys — yo) sine(ys — y1)

— o0

-sinc(y1 — y2) sinc(y2 — y1) |y.=0 dy1

+00 4 2
= / sinc(yp)* dy; = 3

—00
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TABLE |

EXAMPLE OF COMPLEXITY REDUCTION USING THE RULES DESCRIBED INNEMMA [5.2

Example 1 Example 2
Step w Rule | ¢ w Rule | ¢
1 [1,23221]| 1 |3] [123121]] 1 3
2 [1,2,2,2,1] 2 |2 [1,21,271] 2 5
3 [1,2,2,1] 2 |2 [1,2,1,2]
4 [1,2,1] 1 |2
5 [1,1] 2 |2
6 [1] 1 |1
7 (l
vlw) =1 v(w) =2/3

In the following example, Lemmds 5.1 ahd]5.2 are exploitedxplicitly computeE[)\éﬁ].

Example 4: Let us considep = 4. The total number of partitions ¢ = {1, 2, 3,4} is equal
to B(4) = 15. Considering the tree of depih we apply to each path the rules of Lemma 5.2,
and we find that 14 paths (partitions) out of 15 reduce to thetgmath, thus contributing
with v(w) = 1. The only path that cannot be further reducedis- [1, 2, 1, 2]. Thus, applying
Lemmalb.1 withn = 2, we obtainv(w) = 2/3. From [24) and considering all contributions,
we obtain:

El\ ] = 5 + (6 + (2/3)d) B+ 683+ 1.

VI. CONVERGENCE TO THEMARCENKO-PASTUR DISTRIBUTION

In Section Y, we have shown that the moments of the asympeagienvalues ofl'; are polynomials
in 3, given by [24). In particular, the-th momentE[)\Zﬁ] has degre@ — 1 and is given by the sum of
B(p) positive contributions of the form(w)?8P~*), Sinced < v(w) < 1 and3 > 0, for anyd, the
following inequality holds:

EG 115 < BN 4]

i.e., for any giverp and 3, the moments of the asymptotic eigenvalues decrease asttialiinension

increases. The seri@ﬁ)\fm], as a function ofl, is positive and monotonically decreasing, thus it congsrg
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to:

BN, 5l = lim B[N ) (27)

d——+oo

Lemma 6.1:The momentsE [\, 6] are the Narayana polynomials, given by

BN, 5l =) T(p, k)pr* (28)

k=1
whereT'(p, k) = +(?~1)(,”,) are theNarayana numberf34], [35]. Moreover, the random variab)é 5
follows the Martenko-Pastur distribution [6] with pdf é&s€igure 2):

V(e — )@ — )

p

= 29
wherecy,co = (1£/B)%,0< <1, o<z <cy.
Proof: The proof is given in AppendikxD. [
16
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Fig. 2. Marcenko-Pastur distribution

In the following, we apply our findings to the study of the LME®f a reconstructed multidimensional

field; in particular, we exploit the Mar€enko-Pastur dimition to compute the expectation in {11).
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Fig. 3. MSE of the reconstructed field fdr= 1 and varying values ofs. Comparison between the MSE asymptotic value

(@) and the fully analytical expression derived using therdénko-Pastur distributiofi_(30)

VII. STUDY OF THE RECONSTRUCTION QUALITY THROUGH THEMARCENKO-PASTUR DISTRIBUTION

Recall that the MSE provided by the LMMSE filter is [5]:

MSELMMSE _ [ af ]
° )\IEL, /\d,ﬁ + af
where )\ g is distributed as the asymptotic eigenvaluesIpf with pdf f; g(x).

By using the MarCenko-Pastur distributigfiy, 3 instead off; 3, we have:

_ 0B 1 _ [* aBlasle)
e T A

26— 0+ /& 18 0)
20

wheref =1+ 5(1 + «).

Equation [(3D) provides an approximation to thESE.,, which, as shown in the following plots, can
be exploited to derive the quality of the reconstructed figiden a finited.

We first considerd = 1 and compare in Figurk] 3 the expression of M&E,, as in [11) (solid

lines) with the one obtained by using the MarCenko-Pasistribdution (dashed lines). The results are
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le-1

le-2

MSE

le-3

le-4

le-5
-20

Fig. 4. MSE of the reconstructed field, fér= 0.4 andd = 1, 2, 3. Comparison between the MSE asymptotic valud (11) and
the fully analytical expression derived using the Mar@Rastur distributior[ (30)

presented as functions of the S\Rind for different values off. We computed[(11) by averaging over
the eigenvalues of 200 realizations of the matfiix, with A/ = 150. The plot shows that, for small
values of 3, the Mar€enko-Pastur distribution (30) yields an excgllapproximation to theMSE,
already ford = 1. Instead, for values of greater than 0.2, the expression[in](30) fails to providela va
approximation.

However, it is interesting to notice that, fdr> 1, it is possible to obtain an accurate approximation of
the MSE, using the MarCenko-Pastur distribution, even for largeies of 3. This is shown by Figures
[4 and[%, which plot the results obtained throufghl (11) {80)3 equal to 0.4 and 0.8, respectively.
The results are presented as the SN®ries and for different values of the field dimensian

Looking at Figurd ¥, we note that our approximation is tight & > 2, while Figure[5 shows that,

whend = 3, we still get a fairly good approximation fgf as large a$.8.
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Fig. 5. MSE of the reconstructed field, fér= 0.8 andd = 1, 2, 3. Comparison between the MSE asymptotic valud (11) and
the fully analytical expression derived using the Mar@Rastur distributior[ (30)

VIIl. CONCLUSIONS

We considered a large-scale wireless sensor network gagnplimultidimensional field, and we
investigated the mean square error (MSE) of the signal stoacted at the sink node. We noticed that
an analytical study of the quality of the reconstructed figdld be carried out by using the eigenvalue
distribution of the matrix representing the sampling syst&ince such a distribution is unknown, we
first derived a closed-form expression of the distributioonments. By using this expression, we were
able to show that the eigenvalue distribution of the reqoietibn matrix tends to the Martenko-Pastur
distribution as the field dimension tends to infinity. We agxblour results to the study of the MSE of the
reconstructed field, when linear filtering is used at the siole. We found that, by using the Mar¢enko-
Pastur distribution instead of the actual eigenvalue itigion, we obtain a close approximation to the
MSE of the reconstructed signal, which holds for field dimensd > 2.

We believe that our work is the basis for an analytical stufiyvarious aspects concerning the

reconstruction quality of multidimensional sensor fieldad, more generally, of irregularly sampled
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signals.

APPENDIXA

THE CONSTRAINTS

Let us consider a vector of integegsof size p partitioning the se® = {1,...,p} in k subsetsP;,
1 < j < k, and the set ot constraints[(21). We first show that one of these constrasntdways

redundant.

A. Redundant constraint

Choose an integef, 1 < j < k. Summing up all constraints except for theh, we get:

k k
doen=) n—ci=) Li—lpy—cj=—¢
h=1 h=1 i€P

h#j

which gives thej-th constraint since ;. ¢; — ¢};11] = 0. Thus, one of the constraints in {21) is always

redundant. Next, we show that the remaining 1 constraints are linearly independent.

B. Linear independence
The k constraints in[{21) can be arranged in the foMi? = 0 with £ = [¢,...,£,]T and W being

a k x p matrix defined as
W=W - W" (31)

where

+1 1eP;
(W) = ’

0  otherwise
and W” is obtained fromW’ by circularly shifting the rows to the right by one positiddince one of
the constraintd (21) is redundant, the rankWfis: p(W) < k — 1. Now we prove that the rank &V
is equal tok — 1.

Since the subset®; have empty intersection, the rows ¥’ are linearly independent; hence&/’
has rankk. Also, W” is obtained fromW’ by circularly shifting the rows by one position to the right,
thus W” can be written a3V’ = W’S whereS is the p x p right-shift matrix [36], i.e., the entries
of the i-th row of S are zeros except for an entry equal to 1 at posifios 1]. As a consequence,

W =W - W’'S = W/(I, — S) where the rows of the matrik, — S are obtained by circularly shifting
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the vector[+1,—1,0,...,0] and thus has rank(I, — S) = p — 1. Hence, using the properties of the

rank of matrix products reported in [36], we have
p(W) = p(W'(I, = 8)) > p(W') + p(I, =S) —p=Fk -1

We recall that the system of linear equatioVéz has a finite number of integer solutions bounded in

[~M, ..., M]% The number of solutions decreasespd®V) increases.

APPENDIX B
PROOF OFLEMMA
Proof: Using [20) and[(Z5), we obtain:

k(w)

v(w) = J\/[1—>+oo (2M—|— w)+1 Z H o(ey)

Ly, j=1

We first notice that]_[f(:"{) d(cj) = 6(WL) where thek(w) x p matrix W is defined in Appendix_ A
ando(W¢e) is a multidimensional Kronecker delta [33]. Since the rafiR¥ is p(W) = k(w) — 1 (see
AppendixA), theny(W£) defines a subspace @f with p— k(w)+ 1 dimensions. Therefore, considering
that £ is a vector of integers with entries ranging in the interjal\/, ..., M| and taking the limit for
M — oo, we obtainv(w) = f[_l/m/z)p dq¢ (Wz) dz wherez € RP and the functiony,; represents the

Dirac delta. We have tha};(Wz) can be factorized as

H 0d r]Tz (32)

whererjT is the j-th row of W. As already shown in Appendix|A, one of the constraints (8Iedundant
and, hence, one of the factors in the right hand sidé_df (38),tlse n-th, must not be included in the
product. Now, moving to the Fourier transform domain, we waite: 5d(roz) = ffocf exp(j27ryroz) dy.

Therefore,

)
v(w) = 8q(r¥z) dz
@ = [ I e

P . .
Jj=Lj#n

= / H 2T % dy, dz
[=1/2.1/2)7 ;7 jap I 00

_ / / RELD DT L dy,, dz
[-1/2,1/2)r JRF-1
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wherey,, = [y1,- - Yn—1, Yn+1,- - - ,yk(w)]T. Integrating first with respect tea, we get

v(w) = / / eI2m i 2V Wi dg dy,
Ri-1 J[—1/2,1/2)r

p
— / / H ejZWZiyZWT; dzdy,,
Rr-1 J[—1/2,1/2)

i=1
1/2

p
_ / H/ ejZWZiy;fwi dz; dy,,
Re-1 5 -

1/2

P
3 T . N
= /k 1 I |e”ynw* Slnc(ygwi)dyn
R

i=1
. T p
= / emYn i Wi H SiﬂC(y,TLWZ-) dy,
kal 7,:1
wherew; is thei-th column of W, taken after removing ita-th row. By definition, thej-th rows of W’
and of W” contain bothp — |P;| “0” and |P;| “+1". Since W = W' — W”, we have}_?_; w; = 0 and
v(w) = [ [T7-; sindly, w;) dy,. Notice that, by definition oW (see [(B1L))y,. w; = y; — ¥j |y.—0

if i € P; and[i + 1] € P;.. Moreover, by the definition i (16), we hawg = y.,, wheni € P;. Thus,

p
viw) = /]Rkl HSinqy‘*’i B yw[i+11) |yn=0 dyn

1=1

APPENDIXC

PROOF OFLEMMA (SMPLIFICATION RULES)

LetP; be a singleton wittP; = i andw; = j. We first notice that, sinc®; is a singletonji—1], [i+1] ¢

P;. By applying Lemma5]1 with an arbitrany # j, we have

o(w) = /R T] sinclsee, — )

k—1
h=1

p
= / H Sinqywh, - yw[thl])Sinqu[i—l] - wa)
REZD p=y

Yn =0 dyn

h#1
ntli-1)
'Sinqywi - yw[i+1]) |yn=0 dyn
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We now integrate with respect tp, with j = w; and we obtain

p
’U((.d) = / H Sinc(ywh, - yw[h+11)
Rk—2 bt
h#i
htfi—1]

/ Sinqyw[ifl] B yj)smdyj - yw[i+1]) |yn:0 dyj dy;;
R

p
— /R“ I sincwe, — v,

h=1
hi
hli-1]

'Sinqyw[wl] - yW[i+1]) |yn=0 dy;
-1

p
_ : ,
= /sz ;1_[ SINAYu; — Y, , ) lya=o dyy, = v(w)

=1
wherey’, andw’ have been obtained from, andw by removing theirj-th andi-th element, respectively.

Obviouslyy;, has sizék—1 andw’ has sizep—1. Let P; be such thatP; = i, [i + 1], i.€.,w; = wjj41] = J.
Then,

p
U(w) = / Sinqywh - yW[h+1]) |yn:0 dYn
RE =1

= / Sinqywh - yw[h+11)
Re—1
h=1
h#i
'SinC(ywi - yw[i+1]) |yn=0 dyn

p
= /]Rk1 H Sinqywh - yw[hﬂ])SinC(yj — yj) |yn:0 dyn
h=1

p

hti
p
= / Sinqywh - yw[h+1]) |yn:0 dyn
RF-1
h=1
h#i
p—1
= / H Sinqng - wahﬂ]) |yn:0 dy, = v(w’)
Rk—1 3o

wherew’ has been obtained from by removing itsi-th element.

APPENDIXD
PROOF OFLEMMA [6.1

In order to prove Lemma@_@.1, we first note tHaf , may contain both crossing and non-crossing

partitions [37].
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a) Non-crossing partitions:Every non-crossing partition contains at least a singletoa subset
with adjacencies, and therefore can be reduced by usingutee m Lemmd 5]2. After reduction, the
resulting partition is still non-crossing, thus it can betffier reduced till the empty set is reached. It
follows that the non-crossing partitien € €, ;. contributes to the expression Et)‘ik] with a coefficient
v(w) = 1.

b) Crossing partitions:Recall that, in general, the coefficientw) defined in[(26) can be obtained
by counting the solutions of the system of equatiows¢ = 0 where thek(w) x p matrix W contains
the coefficients of thé:(w) constraints in[(21).

If w e, is a crossing partition, then

e k(w) > 2 (by definition, a partition withk(w) = 1 is always non-crossing)

« it contains at least two subse® andP;., with j # j', which are crossing.

Some crossing partitions can be reduced by applying the inléemma 5.2 but, even after reduction,
they remain crossing.

Let us now focus on the crossing sub$gtof a partitionw which has been reduced by applying the
rules in Lemma 5J2. Without loss of generality, we assume [fRg = h, i.e. the partitionP; containsh
elements withh > 2 sinceP; is not a singleton. Then, by definition of the matNX (see AppendiX A)
its j-th row, ro, containsh entries with value 1h entries with value—1 andp — 2h zeros. We then
build the 2 x p matrix W as W = [rj, —r;]T. Notice thatW has rank 1 and the system of equations
W = 0 contains the constraints induced by a partition= [1,2,...,1,2] with 2h entries. Since the
system of equation§\7’£ = 0 contains a reduced set of constraints with respedVé = 0 and, thus, a
larger number of solutions, it follows tha{w) < v(w).

It is straightforward to show that for a partition such@swith k(w) = 2, the coefficientv(w) is
given by Lemmd5]1 as(w) = [ sind(y)?" dy. This is a decreasing function af and sinceh > 2 we

have:
(@) = / sino(y)?" dy < / sin(y)* dy = 2
R R 3

Therefore, we conclude thafw) < v(w) < 1.
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c) Crossing and non-crossing partitionget Q1 Q. C Qi be, respectively, the set of crossing

and non-crossing partitions 6f, , with Q7 , N Q7 , =0 andQ , U QP = Q. Then,

EN, 5 —dngZﬁp Y vw)

wEeN,
_ 1 p—k d d
Jm S (Y s Y )
= weQs | wenr

@ -
= Zﬁp"“lﬁ;‘,k
k=1
where the equalitya) is due to the fact that for non-crossing partitiongs) = 1, while for crossing
partitions v(w) < 1 and, hencelimy_, o v(w)? = 0. In [38], it can be found that the number of
non-crossing partitions of size in a p-element set is given by the Narayana numbggs, k) = |Q2 |

and thereforeg [\ 5l = P _ T(p,k)sP~* are the Narayana polynomials. In [6], it is shown that the

Narayana polynomials are the moments of the MarCenkasPdstribution.

APPENDIXE
ProoF ofF(11)

We show that when the LMMSE filter is used, the expression efattymptotic MSE is given by (111).
Indeed, by using (10)[17)[1(8), and (9) we have:

1
MSE,, = li — A 1Gyp — a|?
Mr%n-i-oo g (2M + 1)d I}%a,n [H d dP a” ]

whereA; = R;+ol andR, = GdGL. Substituting[(¥) in the above expression and assumjag’] =
02T andE[nnf] = 021, we get
1

52
0-(1

E [|A;'Gap — al?]

a,n

- T {(A;le ~DA 'Ry - T)T + aA;leAgl}

= Tr{aRq+ol) '} =Tr{aB(Ts+apl)~'}
whereT,; = BRy. Let us consider an analytic functigr-) in R*. Let X = UAUT be a random positive
definite Hermitiann x n matrix, whereU is the eigenvectors matrix &X and A is a diagonal matrix

containing the eigenvalues &. By using the result for symmetric matrices in [39, Ch. 6] timed

with the result in [40, pag. 481], we havBm,_. 1 TrE[g(X)] = E[g(\)] where the random variable
)
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A is distributed as the asymptotic eigenvaluesXofit follows that

TrI)Eg [aB(Tq + apT)~}]

I -
Moo 2M + 1)d E [
5

af ]
/\67d + af
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