
ar
X

iv
:0

70
7.

19
54

v1
  [

cs
.O

H
]  

13
 J

ul
 2

00
7

1

Bandlimited Field Reconstruction for

Wireless Sensor Networks

Alessandro Nordio Carla-Fabiana Chiasserini Emanuele Viterbo

Politecnico di Torino – Dipartimento di Elettronica

C. Duca degli Abruzzi 24, I-10129 Torino (Italy)

e-mail: <name>@polito.it

Abstract

Wireless sensor networks are often used for environmental monitoring applications. In this context

sampling and reconstruction of a physical field is one of the most important problems to solve. We focus

on a bandlimited field and find under which conditions on the network topology the reconstruction of

the field is successful, with a given probability. We review irregular sampling theory, and analyze the

problem using random matrix theory. We show that even a very irregular spatial distribution of sensors

may lead to a successful signal reconstruction, provided that the number of collected samples is large

enough with respect to the field bandwidth. Furthermore, we give the basis to analytically determine

the probability of successful field reconstruction.

Keywords: Irregular sampling, random matrices, Toeplitz matrix, eigenvalue distribution.

I. INTRODUCTION

One of the most popular applications of wireless sensor networks is environmental monitoring.

In general, a physical phenomenon (hereinafter also calledsensor field or physical field) may

vary over both space and time, with some band limitation in both domains. In this work, we

address the problem of sampling and reconstruction of a spatial field at a fixed time instant.

We focus on a bandlimited field (e.g., pressure and temperature), and assume that sensors are

randomly deployed over a geographical area to sample the phenomenon of interest.
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Data are transfered from the sensors to a common data-collecting unit, the so-called sink node.

In this work, however, we are concerned only with the reconstruction of the sensor field, and we

do not address issues related to information transport. Thus, we assume that all data is correctly

received at the sink node. Furthermore, we assume that the sensors have a sufficiently high

precision so that the quantization error is negligible, andthe sensors position is known at the

sink node. The latter assumption implies that nodes are either located at pre-defined positions,

or, if randomly deployed, their location can be acquired (see [8]–[10] for a description of node

location methods in sensor networks).

Our objective is to investigate the relation between the network topology and the probability

of successful reconstruction of the field of interest. The success of the reconstruction algorithm

strongly depends on the given machine precision, since it may fail to invert some ill-conditioned

Toeplitz matrix (see Section III).

More specifically, we pose the following question:under which conditions on the network

topology (i.e., on the sample distribution) the sink node successfully reconstructs the signal

with a given probability?The solution to the problem seems to be hard to find, even underthe

simplifying assumptions we described above.

The main contributions of our work are summarized below.

(i) We first consider deterministic sensor locations. By reviewing irregular sampling theory [1],

we show some sufficient conditions on the number of sensors tobe deployed and on how

they should be spatially spaced so as to successfully reconstruct the measured field.

(ii) We then consider a random network topology and analyze the problem using random matrix

theory. We identify the conditions under which the filed reconstruction is successful with a

fixed probability, and we show that even a very irregular spatial distribution of sensors may

lead to a successful signal reconstruction, provided that the number of collected samples

is large enough with respect to the field bandwidth.

(iii) Finally we provide the theoretical basis to estimate the required number of active sensors,

given the field bandwidth.

II. RELATED WORK

Few papers have addressed the problem of sampling and reconstruction in sensor networks.

Efficient techniques for spatial sampling in sensor networks are proposed in [2], [3]. In particu-
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lar [2] presents an algorithm to determine which sensor subsets should be selected to acquire data

from an area of interest and which nodes should remain inactive to save energy. The algorithm

chooses sensors in such a way that the node positions can be mapped into a blue noise binary

pattern. In [3], an adaptive sampling is described, which allows the central data-collector to

vary the number of active sensors, i.e., samples, accordingto the desired resolution level. Data

acquisition is also studied in [4], where the authors consider a unidimensional field, uniformly

sampled at the Nyquist frequency by low precision sensors. The authors show that the number

of sensors (i.e., samples) can be traded-off with the precision of sensors. The problem of the

reconstruction of a bandlimited signal from an irregular set of samples at unknown locations is

addressed in [5]. There, different solution methods are proposed, and the conditions for which

there exist multiple solutions or a unique solution are discussed.

Note that our work significantly differs from the studies above because we assume that the

sensors location are known (or can be determined [8]–[10]) and the sensor precision is sufficiently

high so that the quantization error is negligible. The question we pose is instead under which

conditions (on the network system) the reconstruction of a bandlimited signal is successful with

a given probability.

III. I RREGULAR SAMPLING OF BAND-LIMITED SIGNALS

Let us consider the one-dimensional model wherer sensors, located in the normalized interval

[0, 1), measure the value of a band-limited signalp(t). As a first step, we assume that the position

of the sensors sampling the field are deterministic and known, and the sensors can represent each

sample with a sufficient number of bits so that the quantization error is negligible. Lettq ∈ [0, 1)

for q = 1 . . . , r be the deterministic locations of the sampling points ordered increasingly and

p(tq) the corresponding samples.

A strictly band-limited signal over the interval[0, 1) can be written as the weighted sum of

M ′ harmonics in terms of Fourier series

p(t) =

M ′

∑

k=−M ′

ake
2πikt (1)

Note that for real valued signals the Fourier coefficients satisfy the relationa∗
k = a−k and that

the series (1) can be represented as a sum of cosines.

The reconstruction problem can be formulated as follows:
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given r pairs [tq, p(tq)] for q = 1, . . . , r and tq ∈ [0, 1) find the band-limited signal in (1)

uniquely specified by the sequence of its Fourier coefficients ak.

Let the reconstructed signal be

p̂(t) =

M
∑

k=−M

âke
2πikt (2)

where theâk are the corresponding Fourier coefficients up to theM-th harmonic. In general,

the reconstruction procedure will minimize‖p(t) − p̂(t)‖2 if M < M ′ and givep(t) = p̂(t) if

M = M ′.

Consider the(2M + 1) × r matrix F whose(k, q)-th element is defined by

(F)k,q =
1√
r
e2πiktq

k = −M, . . . , M

q = 1, . . . , r

the vectorâ = [â−M , . . . , â0, . . . , âM ]T of size2M + 1 and the vector

p = [p(t1), . . . , p(tr)]
T. We have the following linear system [1]:

FF†â = Fp (3)

where(·)† is the conjugate transpose operator. Let us denoteT = FF† andb = Fp, hence (3)

becomesTâ = b and thenâ = T−1b.

When the samples are equally spaced in the interval[0, 1), i.e., tq = (q−1)/r, we observe that

the matrixF is a unitary matrix (FF† = T = I2M+1) 1 and its rows are orthonormal vectors of

an inverse DFT matrix. In this case (3) gives the firstM Fourier coefficients of sample sequence

p.

When the samplestq are not equally spaced, the matrixF is no longer unitary and the matrix

T becomes a(2M + 1) × (2M + 1) Hermitian Toeplitz matrix

T = T† =















r0 r1 · · · r2M

r−1 r0 · · · r2M−1

. . .

r−2M · · · r0















1The symbolIn represents then by n identity matrix
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where

(T)k,m = rk−m =
1

r

r
∑

q=1

e2πi(k−m)tq k, m = −M . . . , M (4)

The above Toeplitz matrixT is uniquely defined by the4M + 1 variables

rℓ =
1

r

r
∑

q=1

e2πiℓtq ℓ = −2M, . . . 2M (5)

The solution of (3), which involves the inversion ofT, requires some care if the condition

number ofT (or equivalently ofF) becomes large. We recall that the condition number ofT is

defined as

κ =
λmax

λmin
(6)

whereλmax andλmin are the largest and the smallest eigenvalues ofT, respectively. The base-10

logarithm of κ is an estimate of how many base-10 digits are lost in solving alinear system

with that matrix.

In practice, matrix inversion is usually performed by algorithms which are very sensitive to

small eigenvalues, especially when smaller than the machine precision. For this reason in [1] a

preconditioning technique is used to guarantee a bounded condition number when the maximum

separation between consecutive sampling points is not too large. More precisely, by defining

wq = (tq+1 − tq−1)/2 for q = 1 . . . , r, where t0 = tr − 1 and tr+1 = 1 + t1, and by letting

W = diag(w1, . . . , wr), the preconditioned system becomes

Twâ = bw

whereTw = FWF† and bw = FWp. Let us define the maximum gap between consecutive

sampling points as

δ = max(tq − tq−1).

In [1] it is shown that, whenδ < 1/2M ,we have:

κ(Tw) ≤
(

1 + 2δM

1 − 2δM

)2

(7)

This result generalizes the Nyquist sampling theorem to thecase of irregular sampling, but only

gives asufficientcondition for perfect reconstruction when the condition number is compatible

with the machine precision. Unfortunately, whenδ > 1/2M , the result (7) does not hold.
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In Figure 1 and 2 we present two examples of reconstructed signals from irregular sampling,

using (3). Figure 1 refers to the caseM = 10 and r = 26, where the samples have been

randomly selected over the interval[0, 0.8). The signal is perfectly reconstructed even if large

gaps are present (δ > 0.2, i.e., δ > 1/2M). In Figure 2,r = 21 samples of the same signal of

Figure 1 have been taken randomly over the entire window[0, 1). Due to the bad conditioning

of the matrixT (i.e., very low eigenvalues), the algorithm fails in reconstructing the signal due

to machine precision underflow.

Driven by these observations, the objective of our work is toprovide conditions for the

successful reconstruction of the sampled field, by using a probabilistic approach. In the following

we give a probabilistic description of the condition number, without explicitly considering

preconditioning.

IV. THE RANDOM MATRIX APPROACH: UNSUCCESSFUL SIGNAL RECONSTRUCTION

The above results are based on deterministic locations of the sampling points. In this section we

discuss instead the case where the sampling pointstq are i.i.d. random variables with uniform

distributionU [0, 1). In other words we consider the case where the matrixT is random and

completely defined by the random vectort = [t1, . . . , tr]. We introduce here the parameterβ as

the ratio of the two-sided signal bandwidth2M + 1 and the number of sensorsr

β =
2M + 1

r
. (8)

In the following we consider the asymptotic case where the values ofM andr grow to infinity

while β is kept constant. We then show that properties of systems with finite M andr are well

approximated by the asymptotic results.

We focus here on the expression of the probability of unsuccessful signal reconstruction, i.e.,

the probability that the reconstruction algorithm fails given the machine precisionǫ, the signal

bandwidthM , and the number of sensorsr. For a given realization ofT and for finite values of

M and r we denote byλ = [λ1, . . . , λ2M+1] the vector of eigenvalues, and byλmin = min(λ)

andλmax = max(λ) the minimum and maximum eigenvalues, respectively. Also let fM,β(x) be

the empirical probability density function (pdf) of the eigenvalues ofT for a finite M and β

and letfβ(x) be the limiting eigenvalue pdf in the asymptotic case (i.e.,when M and r grow

to infinity with constantβ) [6]. The random variableλmin = min(λ), and the condition number
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κ have pdffmin
M,β(x) and fκ

M,β(x), respectively. The corresponding cumulative density functions

(cdf) are denoted byFM,β(x), Fβ(x), Fmin
M,β(x), andF κ

M,β(x).

A. Some properties of the eigenvalue distribution

We first analyze by Montecarlo simulation some properties ofthe distributionfM,β(x). Figure 3

shows histograms offM,β(x) for M = 1, 4, 10, 90, β = 0.25, and bin width of0.1. Notice that,

as M increases with constantβ, the histograms offM,β(x) seem to converge tofβ(x), only

depending onβ. Indeed, looking at the figure, one can notice that the difference between the

curves forM = 10 and M = 90 is negligible. Although we report in Figure 3 only the case

for β = 0.25, we observed the same behavior for any value ofβ. We therefore conclude that

M = 10 is large enough to provide a good approximation offβ(x).

In Figure 4 we show histograms offM,β(x) for β = 0.15, 0.25, 0.35, 0.45, 0.55 and values of

M around100. For β larger than0.35 the distribution shows oscillations and tends to infinity

while x approaching0. On the other hand, forβ lower than0.35 the pdf does not oscillate and

tends to0 while x approaching0. In order to better understand this behavior for smallx, which

can be heavily affected by the bin width, in Figure 5 we consider the cdfFM,β(x) in the log-log

scale, for various values ofβ ranging from0.1 to 0.8 andM = 200. The dashed curves represent

the simulated cdf. Surprisingly they show a linear behaviorfor small values ofx and for any

value ofβ. This is evidenced by the solid lines which are the tangents to the dashed curves at

FM,β(x) = 10−2. The slope of the lines is parameterized byβ. In our simulations the machine

precision is approximatelyǫ = 10−16 and, hence, values ofx < ǫ cannot be represented since

they are treated as zero by the algorithm. Indeed the simulated pdfs loose their linear behavior

while approachingx = ǫ (see the caseβ = 0.8 in Figure 5). We conclude that forx ≪ 1 the

cdf Fβ(x) can be approximated by

Fβ(x) ≈ bxa (9)

wherea = a(β) and b = b(β) are both functions ofβ. By deriving (9) with respect tox we

obtain the approximate expression for the pdf:

fβ(x) ≈ a(β)b(β)xa(β)−1 (10)

From (10) it can be seen that the functiona(β) represents the slope ofFβ(x) in the log-log

scale forx ≪ 1. Note that in orderxa(β)−1 to be integrable in[0, c), for any positive constantc,
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the conditiona(β) > 0 should be satisfied. Note also from Figure 5 that the slopea(β) = 1 is

obtained forβ ≈ 0.35. For this value ofβ the approximate pdf is constant forx ≪ 1, which is

consistent with the results in Figure 4.

Some additional considerations can be drawn from Figure 6, which presents the pdf offM,β(x)

for β = 0.25, 0.50, 0.75 and M = 200. It is interesting to note that for any value ofβ, large

eigenvalues are less likely to appear than very small eigenvalues. This is evident by observing

that for x ≫ 1 the pdf falls to−∞ much faster than forx ≪ 1. This consideration is of great

relevance when discussing the condition number distribution.

B. Distribution of the minimum eigenvalue

For finite M the cdf ofλmin can be computed as follows

Fmin
M,β(x) = P(λmin < x|M)

= P(min(λ) < x|M)

In general the random variablesλ1, . . . , λ2M+1 are not independent. However, considering suf-

ficiently large values ofM (namely,M ≥ 10), we can write the following upper bound for

Fmin
M,β(x):

Fmin
M,β(x) ≤ (2M + 1)Fβ(x). (11)

This is obtained by assuming that the eigenvalues are independent with pdf equal to the limiting

eigenvalue distribution. The simulation results presented in Figure 7 confirm the expression in

(11). The figure shows the cdfs ofλ and λmin in the log-log scale forβ = 0.25, 0.50, 0.75

and M = 40. The cdf of λmin also shows a linear behavior forx ≪ 1. In the log-log scale,

according to (11), the two cdfs should be separated bylog10(2M + 1). In our case:M = 40

and log10(2M + 1) ≈ 1.91. As is evident from the figure, this upper bound is extremely tight,

especially for low values ofβ.

C. Distribution of the condition number

Here we describe the condition number distribution. The condition number is defined by (6).

As noted at the end of Section IV-A the minimum eigenvalue dominates the ratioλmax/λmin. This

fact is more evident in Figure 8, where we compare the distributions of the condition number
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and of the minimum eigenvalue, forβ = 0.25 andM = 10, 20, 40. The three dashed curves on

the left represent the pdf of the minimum eigenvalue. The solid lines on the right represent the

pdf of the condition number for the same values ofM . The two set of distributions look very

similar. We definey = log10 x, γmin
M,β(y) = log10 fmin

M,β(10y) and γκ
M,β(y) = log10 fκ

M,β(10y). By

observing the results in Figure 8, the following relation holds:

γκ
M,β(y) ≈ γmin

M,β(−y + d)

where d is a parameter. In the plot, for each value ofM the circles represent the above

approximation where the parameterd is set to1/3. The same considerations hold for any value

of β. Converting the above approximation into the linear scale,we obtain:

fκ
M,β(x) ≈ fmin

M,β

(

10d

x

)

and by taking the derivative of both sides of (11) with respect to x, we finally obtain

fκ
M,β(x) ≈ (2M + 1)fβ

(

10d

x

)

which holds forx ≫ 1.

D. Summary

In this section we have given numerical evidence of the following facts:

• the condition number distribution is dominated by the distribution of the minimum eigen-

value ofT;

• the distribution of the minimum eigenvalue is upper boundedby a simple function of the

asymptotic distribution of the eigenvalues ofT.

Thus, in the following we focus onfβ(x); indeed, knowingfβ(x) we could obtain the probability

that the minimum eigenvalue is below a certain threshold, i.e., that the condition number is less

the machine precision.

V. SOME ANALYTIC RESULTS ON THE EIGENVALUE PDF

We now derive some analytic results on the asymptotic eigenvalue distribution,fβ(x). Ideally

we would like to analytically computefβ(x), however such a calculation seems to be prohibitive.

Therefore, as a first step we compute the closed form expression of the moments of the asymptotic
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eigenvalue distribution,E[λp]. Note that, if all moments are available, the an analytic expression

of fβ(x) can be derived through its moment generating function, by applying the inverse Laplace

transform.

In the limit for M and r growing to infinity with constantβ the expression ofE[λp] can be

easily obtained from the powers ofT. IndeedT is an Hermitian matrix and can be decomposed

asT = UΛU†, whereΛ = diag(λ) is a diagonal matrix containing the eigenvalues ofT and

U is the matrix of eigenvectors. It follows that

Tr{Tp} = Tr
{(

UΛU†
)p}

= Tr{UΛpU†}

= Tr{U†UΛp}

= Tr{Λp}

=
2M+1
∑

i=1

λp
i (12)

Then:

lim
M,r→+∞
2M+1

r
=β

1

2M + 1
Tr{E [Tp]} = lim

M,r→+∞
2M+1

r
=β

1

2M + 1
E

[

2M
∑

i=0

λp
i

]

= E






lim

M,r→+∞
2M+1

r
=β

1

2M + 1

2M
∑

i=0

λp
i







= E [λp] (13)

Please notice that sinceT is a Toeplitz matrix the Grenander-Szegö [7] theorem couldbe

employed in the limit forM → +∞. Unfortunately in this case the theorem is not applicable

since all entries ofT depend on the matrix sizeM .

From (13) and (5) we obtain:

E[λp] = lim
M,r→+∞
2M+1

r
=β

1

(2M + 1)rp

∑

q∈Q

∑

l∈L

E
t

[

exp

(

2πi

p
∑

i=1

tqi
(ℓi − ℓ[i+1])

)]

(14)

where

Q = {q | q = [q1, . . . , qp], qi = 1, . . . , r}

L = {l | l = [ℓ1, . . . , ℓp], ℓi = 0, . . . , 2M}
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and where the sign[·] refers to the modulop operator2. The average is performed over the

random vectort = [t1, . . . , tr].

Let nowP be the set of integers from 1 top

P = {1, . . . , p}. (15)

Let q ∈ Q and let1 ≤ k(q) ≤ p be the number of distinct values assumed by the entries ofq.

Such values can be arranged, in order of appearance, in the vector q̂ = [q̂1, . . . , q̂k(q)] where the

entriesq̂j are all distinct. Usingq andq̂ we create the subsetsP1(q), . . . ,Pk(q)(q) of P defined

by

Pj(q) = {i ∈ P | qi = q̂j} . (16)

Such subsets are non-empty and disjoint (Pj 6= ∅, ∪
j
Pj = P, andPj ∩ Ph = ∅ for j 6= h).

Finally we defineτ(q)

τ(q) =
{

P1(q), . . . ,Pk(q)(q)
}

as the partition ofP induced byq.

Example 1: Let p = 6 andq = [4, 9, 5, 5, 4, 3]. Then, by (15),P = {1, 2, 3, 4, 5, 6}.

We havek(q) = 4 distinct values which we arrange, in order of appearance, inthe

vector q̂ = [4, 9, 5, 3]. Then

P1(q) = {1, 5} (q1 = q5 = q̂1),

P2(q) = {2} (q2 = q̂2),

P3(q) = {3, 4} (q3 = q4 = q̂3),

P4(q) = {6} (q6 = q̂4),

and τ(q) = {{1, 5}, {2}, {3, 4}, {6}}.

For any givenq ∈ Q, using the definition ofPj(q), we notice that the argument of the average

operator in (14) factorizes ink(q) parts, i.e.

exp

(

2πi

p
∑

i=1

tqi
(ℓi − ℓ[i+1])

)

=

k(q)
∏

j=1

exp



2πitq̂j

∑

i∈Pj(q)

ℓi − ℓ[i+1]





2For simplicity here we follow the convention[p] = p and [p + 1] = 1.
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each depending on a single random variabletq̂j
. Then from (14) we have:

E[λp] = lim
M,r→+∞
2M+1

r
=β

1

(2M + 1)rp

∑

q∈Q

∑

l∈L

E
t





k(q)
∏

j=1

exp



2πitq̂j

∑

i∈Pj(q)

ℓi − ℓ[i+1]









= lim
M,r→+∞
2M+1

r
=β

1

(2M + 1)rp

∑

q∈Q

∑

l∈L

k(q)
∏

j=1

E
tq̂j



exp



2πitq̂j

∑

i∈Pj(q)

ℓi − ℓ[i+1]









= lim
M,r→+∞
2M+1

r
=β

1

(2M + 1)rp

∑

q∈Q

∑

l∈L

k(q)
∏

j=1

δ





∑

i∈Pj(q)

ℓi − ℓ[i+1]



 (17)

whereδ(·) is the Kronecker’s delta. Expression (17) can be further simplified by observing that

• there existr(r − 1) · · · (r − k + 1) = r!/(r − k)! vectorsq ∈ Q generating a certain given

partition ofP made ofk subsets,

• for a givenq the expression

ζ2M(q) =
∑

l∈L

k(q)
∏

j=1

δ





∑

i∈Pj(q)

ℓi − ℓ[i+1]



 (18)

is a polynomial in the variable2M , since it represents the number of points with integer

coordinates contained in the hypercube[0, . . . , 2M ]p and satisfying thek(q) constraints

∑

i∈Pj(q)

ℓi − ℓ[i+1] = 0 (19)

We show in Appendix I that one of these constraints is always redundant and that the number

of linearly independent constraints is exactlyk(q) − 1. By consequence the polynomial

ζ2M(q) has degreep − k(q) + 1.

Let Tp be the set of distinct partitions ofP generated by all vectorsq ∈ Q, then from (17) we

obtain:

E[λp] = lim
M,r→+∞
2M+1

r
=β

1

(2M + 1)rp

∑

q∈Q

∑

l∈L

k(q)
∏

j=1

δ





∑

i∈Pj(q)

ℓi − ℓ[i+1]





(a)
= lim

M,r→+∞
2M+1

r
=β

1

(2M + 1)rp

∑

τ∈Tp

∑

q⇒τ

ζ2M(q)

(b)
= lim

M,r→+∞
2M+1

r
=β

1

(2M + 1)rp

∑

τ∈Tp

r!

(r − k(τ))!
ζ2M(τ) (20)
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where

• the notation
∑

q⇒τ represents the sum over all vectorsq generating a certain given partition

τ ,

• the equality(a) has been obtained by substituting (18), and

• the equality(b) holds because the number of vectorsq generating a given partitionτ is

r!/(r − k(τ))!.

We point out that the functionsk(q) andζ2M(q) depend only on the partitionτ(q) induced by

q. Since in the third line of (20) we removed the dependence on the vectorsq, the expression

of E[λp] is now function of the partitionsτ only. Then with a little abuse of notation, in the

following we refer to the functionsk and ζ2M ask(τ) and ζ2M(τ), respectively.

Taking the limit we finally obtain:

E[λp] =
∑

τ∈Tp

v(τ)βp−k(τ)

=

p
∑

k=1





∑

τ∈Tp,k

v(τ)



 βp−k (21)

whereTp,k is the subset ofTp only containing partitions of sizek, and

v(τ) = lim
M→+∞

ζ2M(τ)

(2M)p−k+1

i.e. v(τ) is the coefficient3 of degree(2M)p−k+1 of the polynomialζ2M(τ). Since1 ≤ k ≤ p

from (21) we note thatE[λp] is a polynomial inβ of degreeβp−1. Again, for the sake of clarity

we give an example:

3Notice also that the coefficientv(τ ) represents the volume of theconvex polytopedescribed by the constraints (19) when

the variablesℓi are considered real and limited to the interval[0, 1]. By consequence0 ≤ v(τ ) ≤ 1.
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Example 2: Let p = 6 and q given by Example 1. The partition isτ =

{{1, 5}, {2}, {3, 4}, {6}}. Then the set ofk(τ) = 4 constraints (19) are given by:

ℓ1 + ℓ5 = ℓ2 + ℓ6

ℓ2 = ℓ3

ℓ3 + ℓ4 = ℓ4 + ℓ5

ℓ6 = ℓ1

The last equation is redundant since can be obtained summingup the first three

constraints. Simplifying we obtainℓ1 = ℓ6, and ℓ2 = ℓ3 = ℓ5. Since each variable

ℓi ranges from0 to 2M , the number of integer solutions satisfying the constraints is

exactlyζ2M(τ) = (2M + 1)3, and thenv(τ) = 1.

To compute (21) we need to enumerate the partitionsτ ∈ Tp. First of all we notice thatTp

represents the set of partitions of ap-element set and thus has cardinality|Tp| = B(p) where

B(p) is thep-th Bell numberor exponential number[11], and that the subsetTp,k has cardinality

Sp,k which is aStirling number of the second kind[12]. An effective way to enumerate such

partitions is to build a tree of depthp as in Figure 9. A label is given to each node, starting

from the root which is labeled by “a”. The rule for building the tree is as follows: each node

N generatesm + 1 leaves, labeled in increasing order starting from “a”, andm is the number

of distinct labels in the path from the root to the nodeN . The number of leaves of such a tree

of depthp is given byB(p). Each path from the root to a leaf represents a partitionτ of the set

P. For a given partition (or path in the tree) the subsetPj is the set of integers corresponding

to the depths of thej-th label in the path.

Example 3: Let us considerp = 4 and the path[a, b, a, a] (see Figure 9). In the path

there are two distinct labels, namely “a” and “b”; thenk(τ) = 2. The label “a” is found

at depths 1,3, and 4, while the label “b” is at depth 2. The partition of P = {1, 2, 3, 4} is

then given byτ = {{1, 3, 4}, {2}}. This partition (or path) contributes to the expression

of E[λp] = E[λ4] with the termv(τ)βp−k = β2 since in this casev(τ) = 1.
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Using the procedure described above we can derive in closed form any moment ofλ. Here

we report the first few moments:

E[λ] = 1

E[λ2] = 1 + β

E[λ3] = 1 + 3β + β2

E[λ4] = 1 + 6β +
20

3
β2 + β3

E[λ5] = 1 + 10β +
70

3
β2 +

40

3
β3 + β4

In practice the algorithm complexity prevents us from computing moments of order greater than

p = 12. To the best of our knowledge, a closed form expression of thegeneric moment ofλ

is still unknown. If all moments were available, then an analytic expression offβ(x) could be

derived through its moment generating functionΨβ(s)

Ψβ(s) =

∫ +∞

0

fβ(x)esx dx =

+∞
∑

p=0

E[λp]

p!
sp (22)

by applying the inverse Laplace transform.

A. Validation

We compare the moments ofλ obtained by simulation with those obtained with the above

closed form analysis. Table I compares the exact values of the moments offβ(x), and the values

obtained by Montecarlo simulation, forβ = 0.25, 0.50, 0.75 andp = 1, . . . , 5. For each value of

β the Table shows three columns. The first column, labeled “Sim” presents the values obtained

by simulation, usingM = 200. The second column, labeled “Exact”, reports the values obtained

using (17)without taking the limit (i.e., using finite values ofM and r). The third column,

labeled “Limit”, presents the limit values obtained through (21). The excellent match between

simulation analytic results shows the validity of our findings.

VI. CONCLUSIONS

We considered a large-scale wireless sensor network sampling a physical field, and we in-

vestigated the relationship between the network topology and the probability of successful

field reconstruction. In the case of deterministic sensor locations, we derived some sufficient
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TABLE I

COMPARISON OF THE MOMENTS OFλ OBTAINED BY SIMULATION AND BY CLOSED FORM ANALYSIS FORM = 200, AND

β = 0.25, 0.50, 0.75.

β = 0.25 β = 0.50 β = 0.75

Sim Exact Limit Sim Exact Limit Sim Exact Limit

p=1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

p=2 1.249 1.249 1.250 1.499 1.499 1.500 1.748 1.748 1.750

p=3 1.810 1.810 1.812 2.746 2.744 2.750 3.802 3.801 3.812

p=4 2.926 2.925 2.932 5.778 5.771 5.792 9.630 9.620 9.672

p=5 5.152 5.152 5.176 13.51 13.49 13.56 27.41 27.35 27.57

conditions for successful reconstruction, by reviewing the literature on irregular sampling. Then,

we considered random network topologies, and employed random matrix theory. By doing so,

we were able to derive some conditions under which the field can be successfully reconstructed

with a given probability.

A great deal of work still has to be done. However, to the best of our knowledge, this work

is the first attempt at solving the problem of identifying theconditions on random network

topologies for the reconstruction of sensor fields. Furthermore, we believe that the basis we

provided for an analytical study of the problem can be of someutility in other fields besides

sensor networks.

APPENDIX I

THE CONSTRAINTS

Let us consider a vector of integersq of sizep partitioning the setP = {1, . . . , p} in k subsets

Pj , 1 ≤ j ≤ k and the set ofk constraints

∑

i∈Pj

ℓi − ℓ[i+1] = 0. (23)

We first show that one of such constraint is always redundant.
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A. Redundant constraint

Choose an integerj, 1 ≤ j ≤ k. Summing up together the constraints, except thej-th, we get

0 =

k
∑

h=1
h 6=j

∑

i∈Ph

ℓi − ℓ[i+1]

=
∑

i∈P/Pj

ℓi − ℓ[i+1]

=
∑

i∈P

ℓi − ℓ[i+1] −
∑

i∈Pj

ℓi − ℓ[i+1]

= −
∑

i∈Pj

ℓi − ℓ[i+1] (24)

which gives thej-th constraint
∑

i∈Pj

ℓi − ℓ[i+1] = 0.

Thus one of the constraints (19) is always redundant. We now show that the remainingk − 1

constraints are linearly independent.

B. Linear independence

The k constraints (19), after some simplifications, can be rearranged in the form

AlT = 0

whereA is a k × p matrix andl = [ℓ1, . . . , ℓp]. We have previously shown that the rank ofA

is such that

ρ(A) ≤ k − 1 (25)

since one constraint is redundant andk ≤ p. We prove now that the rank ofA is exactlyk − 1.

It is possible to writeA asA = A′ − A′′ where(A′)ji = 1 if i ∈ Pj , and0 elsewhere. The

matrix A′ has rankk since its rows are linearly independent due to the fact that subsetsPj have

empty intersection. Similarly(A′′)ji = 1 if [i− 1] ∈ Pj , and0 elsewhere. In practice the matrix

A′′ is the matrixA′ circularly shifted by one position to the right. Hence it canbe written as

A′′ = A′Z
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whereZ is thep× p right-shift matrix, i.e. the entries of thei-th row of Z are zeroes except for

a “1” at position[i + 1]. By consequence

A = A′ − A′Z = A′(Ip − Z),

where

(Ip − Z) =























+1 −1 0 · · · 0

0
. . . . . . . ..

...
...

. . . . .. 0

0
. . . . .. −1

−1 0 · · · 0 +1























has rankρ(Ip − Z) = p − 1. By consequence, using the property

ρ(A) = ρ(A′(Ip − Z))

≥ ρ(A′) + ρ(Ip − Z) − p

= k − 1 (26)

Considering together (25) and (26) we concludeρ(A) = k − 1.
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