Random matrices and communication systems

Homework 7: Stieltjes transform

Due date: May 22 (Thursday).

1. Basic properties: Let F be a probability distribution on \mathbb{R} and $g_F : \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}$ be its Stieltjes transform, defined as

$$g_F(z) = \int_{\mathbb{R}} \frac{1}{x-z} \, dF(x), \quad z \in \mathbb{C} \setminus \mathbb{R}.$$

a) Writing z = u + iv, decompose $g_F(z)$ into real and imaginary parts.

b) It can be shown that g_F is analytic on $\mathbb{C}\setminus\mathbb{R}$ (no proof required here).

c) Show that $\operatorname{Im} g_F(z) > 0$, if $\operatorname{Im} z > 0$.

d) Show that $\lim_{v \to +\infty} v |g_F(iv)| = 1$.

e) Show that $g_F(\overline{z}) = \overline{g_F(z)}$.

NB: If a function g satisfies properties b) to e), then it is the Stieltjes transform of a distribution F (BTW, property c) ensures that F is non-decreasing and property d) ensures that $F(+\infty) - F(-\infty) = 1$).

2. Inversion formula: a) Let F be any probability distribution on \mathbb{R} . For any a < b continuity points of F, prove that

$$\frac{1}{\pi} \lim_{\varepsilon \downarrow 0} \int_{a}^{b} \operatorname{Im} g_{F}(x + i\varepsilon) \, dx = F(b) - F(a).$$

b) Assume now that F has a pdf p_F . Show that for any $x \in \mathbb{R}$,

$$p_F(x) = \frac{1}{\pi} \lim_{\varepsilon \downarrow 0} \operatorname{Im} g_F(x + i\varepsilon).$$

3. a) Let $x_0 \in \mathbb{R}$, $y_0 \ge 0$ and $g_0(z) = \frac{1}{x_0 - iy_0 - z}$ for Imz > 0. Deduce the distribution corresponding to the Stieltjes transform g_0 (separate the cases $y_0 = 0$ and $y_0 > 0$). What are the moments of this distribution?

b) Let g_F be the Stieltjes transform solution of the quadratic equation

$$g_F(z)^2 + z g_F(z) + 1 = 0.$$

Deduce what distribution F corresponds to g_F .

c) Let g_F be the Stieltjes transform solution of the quadratic equation

$$z g_F(z)^2 + z g_F(z) + 1 = 0.$$

Deduce what distribution F corresponds to g_F .

NB: Both the above quadratic equations have two solutions, but notice that for each of them, only one solution is a Stieltjes transform satisfying the properties of Exercise 1.

4. Matrix inversion lemma

Let H be a $n\times n$ real symmetric matrix and $z\in\mathbb{C}\backslash\mathbb{R}.$ Show that

$$((H - zI_n)^{-1})_{11} = \frac{1}{h_{11} - z - h_1^T (H_1 - zI_{n-1})^{-1} h_1},$$

where h_1 is the first column of H without its first element and H_1 is the matrix H with first row and first column removed.