## Homework 7: Stieltjes transform

Due date: May 22 (Thursday).

1. Basic properties: Let $F$ be a probability distribution on $\mathbb{R}$ and $g_{F}: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}$ be its Stieltjes transform, defined as

$$
g_{F}(z)=\int_{\mathbb{R}} \frac{1}{x-z} d F(x), \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

a) Writing $z=u+i v$, decompose $g_{F}(z)$ into real and imaginary parts.
b) It can be shown that $g_{F}$ is analytic on $\mathbb{C} \backslash \mathbb{R}$ (no proof required here).
c) Show that $\operatorname{Im} g_{F}(z)>0$, if $\operatorname{Im} z>0$.
d) Show that $\lim _{v \rightarrow+\infty} v\left|g_{F}(i v)\right|=1$.
e) Show that $g_{F}(\bar{z})=\overline{g_{F}(z)}$.

NB: If a function $g$ satisfies properties b) to e), then it is the Stieltjes transform of a distribution $F$ (BTW, property c) ensures that $F$ is non-decreasing and property d) ensures that $F(+\infty)-F(-\infty)=$ 1).
2. Inversion formula: a) Let $F$ be any probability distribution on $\mathbb{R}$. For any $a<b$ continuity points of $F$, prove that

$$
\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \int_{a}^{b} \operatorname{Im} g_{F}(x+i \varepsilon) d x=F(b)-F(a) .
$$

b) Assume now that $F$ has a pdf $p_{F}$. Show that for any $x \in \mathbb{R}$,

$$
p_{F}(x)=\frac{1}{\pi} \lim _{\varepsilon \downarrow 0} \operatorname{Im} g_{F}(x+i \varepsilon) .
$$

3. a) Let $x_{0} \in \mathbb{R}, y_{0} \geq 0$ and $g_{0}(z)=\frac{1}{x_{0}-i y_{0}-z}$ for $\operatorname{Im} z>0$. Deduce the distribution corresponding to the Stieltjes transform $g_{0}$ (separate the cases $y_{0}=0$ and $y_{0}>0$ ). What are the moments of this distribution?
b) Let $g_{F}$ be the Stieltjes transform solution of the quadratic equation

$$
g_{F}(z)^{2}+z g_{F}(z)+1=0 .
$$

Deduce what distribution $F$ corresponds to $g_{F}$.
c) Let $g_{F}$ be the Stieltjes transform solution of the quadratic equation

$$
z g_{F}(z)^{2}+z g_{F}(z)+1=0 .
$$

Deduce what distribution $F$ corresponds to $g_{F}$.
NB: Both the above quadratic equations have two solutions, but notice that for each of them, only one solution is a Stieltjes transform satisfying the properties of Exercise 1.

## 4. Matrix inversion lemma

Let $H$ be a $n \times n$ real symmetric matrix and $z \in \mathbb{C} \backslash \mathbb{R}$. Show that

$$
\left(\left(H-z I_{n}\right)^{-1}\right)_{11}=\frac{1}{h_{11}-z-h_{1}^{T}\left(H_{1}-z I_{n-1}\right)^{-1} h_{1}},
$$

where $h_{1}$ is the first column of $H$ without its first element and $H_{1}$ is the matrix $H$ with first row and first column removed.

