
Random matrices and communication systems IC-30, Summer Semester 2007-2008

Homework 3: Joint distribution of eigenvalues

Due date: March 17 (Monday).

Let a, b, c be three independent random variables such that a, c ∼ NR(0, 1) and b ∼ NR(0, 1/2), and
let

1. H1 =
(

a b
b c

)
and 2. H2 =

(
a c
c a

)
.

The goal of the exercise is to compute the joint eigenvalue distributions of both H1 and H2, following
two different approaches:

A. use the “Jacobian method” described in the class.

B. compute directly the eigenvalues of the matrix and look for their joint distribution.

Guidelines:

A.1. Since H1 is symmetric, its eigenvalues λ, µ are real and there exists θ ∈ [0, π
2 ] such that(

a b
b c

)
=
(

cos θ sin θ
− sin θ cos θ

) (
λ 0
0 µ

) (
cos θ − sin θ
sin θ cos θ

)
.

• Compute the joint distribution p(a, b, c) of the entries.

• Write explicitly the change of variables a(λ, µ, θ), b(λ, µ, θ), c(λ, µ, θ) and compute its Jacobian

J(λ, µ, θ) = det


∂a
∂λ

∂a
∂µ

∂a
∂θ

∂b
∂λ

∂b
∂µ

∂b
∂θ

∂c
∂λ

∂c
∂µ

∂c
∂θ


∣∣∣∣∣∣∣
(λ,µ,θ)

.

• Compute the joint distribution

p(λ, µ, θ) = p(a(λ, µ, θ), b(λ, µ, θ), c(λ, µ, θ)) |J(λ, µ, θ)|

and deduce an expression for p(λ, µ).

• Compute also
E(λ + µ), E(λµ) and E(max{λ, µ}).

Watch out that the first two computations are particularly easy!

• Compute finally the marginal distribution p(λ) =
∫

R p(λ, µ) dµ. How does it look?

A.2. Redo the same analysis as above, but watch out that the eigenvectors of H2 are now deterministic!
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B. For this part, you might need the following facts about Gaussian random vectors:

Two real Gaussian random variables (x, y) are said to form a (2-variate) Gaussian random vector if for
any α, β ∈ R, αx + βy is also a Gaussian random variable [in this definition, we adopt the convention
that if a random variable is constant (for example equal to zero), then we say that it is a Gaussian
random variable of variance zero].

For example, if x and y are independent Gaussian random variables, then (x, y) forms a Gaussian
random vector.

The joint distribution of a generic Gaussian random vector (x, y) is entirely determined by the means
x̄ = E(x), ȳ = E(y) and the covariance matrix

Σ =
(

σ2
x ρσxσy

ρσxσy σ2
x

)
,

where σ2
x = E((x− x̄)2), σ2

y = E((y − ȳ)2) and ρσxσy = E((x− x̄)(y − ȳ)).

In particular, if Σ is non-singular, then

p(x, y) =
1

2π
√

det Σ
exp

(
−1

2

(
x− x̄
y − ȳ

)T

Σ−1

(
x− x̄
y − ȳ

))
,

and we deduce from this formula that if Σ is diagonal, then x and y are independent.
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