Random matrices and communication systems

IC-30, Summer Semester 2007-2008

Homework 2

Due date: March 10 (Monday).

1. Show that for any $n \times n$ positive definite matrix Q, the map $\Sigma \mapsto \log \det(I + Q\Sigma^{-1})$ is convex on the set of $n \times n$ positive definite matrices Σ , using the following information theoretic inequality:

$$I(X; X+Z) \ge \log \det(I+Q\Sigma^{-1}),$$

if X, Z are n-dimensional complex and jointly continuous random vectors such that $X \sim \mathcal{N}_{\mathbb{C}}(0, Q)$, Z has covariance matrix $\mathbb{E}(ZZ^*) = \Sigma$ and X, Z are independent.

2. Matrix norms

For a given $n \times n$ matrix $A = (a_{jk})$, we define two norms:

$$|||A|||_2 = \sup_{x \in \mathbb{C}^n: ||x||=1} ||Ax||$$
 and $||A||_2^2 = \frac{1}{n} \operatorname{Tr}(AA^*)$

a) Relying only on these definitions, show that

$$\left|\frac{1}{n}\operatorname{Tr}(A)\right| \le ||A||_2 \le |||A|||_2.$$

b) For two $n \times n$ matrices A and B, show moreover that

$$|||AB|||_2 \le |||A|||_2 \, |||B|||_2, \quad ||AB||_2 \le |||A|||_2 \, ||B||_2$$

and find an example of matrices A, B for which

$$||AB||_2 > ||A||_2 ||B||_2.$$

c) Once you have shown the above statements, show that the following holds:

$$|||A|||_2 = \max_{j \in \{1,...,n\}} \sigma_j, \text{ and } ||A||_2^2 = \frac{1}{n} \sum_{j=1}^n \sigma_j^2,$$

where $\sigma_1, \ldots, \sigma_n \geq 0$ are the singular values of A.

d) Asymptotic equivalence: let $(A^{(n)}, B^{(n)})_{n=1}^{\infty}$ be two sequences of $n \times n$ matrices such that

$$\lim_{n \to \infty} \|A^{(n)} - B^{(n)}\|_2 = 0.$$

Is this condition sufficient to ensure that for any fixed $m \ge 0$,

$$\lim_{n \to \infty} \left| \frac{1}{n} \operatorname{Tr} \left((A^{(n)})^m \right) - \frac{1}{n} \operatorname{Tr} \left((B^{(n)})^m \right) \right| = 0 \quad ?$$

If not, what additional condition(s) would be needed?

Hint: use the above statements together with the following fact:

$$(A^{(n)})^m - (B^{(n)})^m = \sum_{j=1}^m (B^{(n)})^{j-1} (A^{(n)} - B^{(n)}) (A^{(n)})^{m-j}.$$