Homework 2

Due date: March 10 (Monday).

1. Show that for any $n \times n$ positive definite matrix Q, the map $\Sigma \mapsto \log \operatorname{det}\left(I+Q \Sigma^{-1}\right)$ is convex on the set of $n \times n$ positive definite matrices Σ, using the following information theoretic inequality:

$$
I(X ; X+Z) \geq \log \operatorname{det}\left(I+Q \Sigma^{-1}\right)
$$

if X, Z are n-dimensional complex and jointly continuous random vectors such that $X \sim \mathcal{N}_{\mathbb{C}}(0, Q)$, Z has covariance matrix $\mathbb{E}\left(Z Z^{*}\right)=\Sigma$ and X, Z are independent.

2. Matrix norms

For a given $n \times n$ matrix $A=\left(a_{j k}\right)$, we define two norms:

$$
\|A \mid\|_{2}=\sup _{x \in \mathbb{C}^{n}:\|x\|=1}\|A x\| \quad \text { and } \quad\|A\|_{2}^{2}=\frac{1}{n} \operatorname{Tr}\left(A A^{*}\right)
$$

a) Relying only on these definitions, show that

$$
\left|\frac{1}{n} \operatorname{Tr}(A)\right| \leq\|A\|_{2} \leq\left|\|A \mid\|_{2}\right.
$$

b) For two $n \times n$ matrices A and B, show moreover that

$$
\left\|A B \left|\left\|\left\|_{2} \leq\right\| A A\left|\left\|_{2}\right\|\right| B\right\|_{2}, \quad\|A B\|_{2} \leq\left\|\left||A|\left\|_{2}\right\| B \|_{2}\right.\right.\right.\right.
$$

and find an example of matrices A, B for which

$$
\|A B\|_{2}>\|A\|_{2}\|B\|_{2}
$$

c) Once you have shown the above statements, show that the following holds:

$$
\left|\|A \mid\|_{2}=\max _{j \in\{1, \ldots, n\}} \sigma_{j}, \quad \text { and } \quad\|A\|_{2}^{2}=\frac{1}{n} \sum_{j=1}^{n} \sigma_{j}^{2}\right.
$$

where $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ are the singular values of A.
d) Asymptotic equivalence: let $\left(A^{(n)}, B^{(n)}\right)_{n=1}^{\infty}$ be two sequences of $n \times n$ matrices such that

$$
\lim _{n \rightarrow \infty}\left\|A^{(n)}-B^{(n)}\right\|_{2}=0
$$

Is this condition sufficient to ensure that for any fixed $m \geq 0$,

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{n} \operatorname{Tr}\left(\left(A^{(n)}\right)^{m}\right)-\frac{1}{n} \operatorname{Tr}\left(\left(B^{(n)}\right)^{m}\right)\right|=0 \quad ?
$$

If not, what additional condition(s) would be needed?
Hint: use the above statements together with the following fact:

$$
\left(A^{(n)}\right)^{m}-\left(B^{(n)}\right)^{m}=\sum_{j=1}^{m}\left(B^{(n)}\right)^{j-1}\left(A^{(n)}-B^{(n)}\right)\left(A^{(n)}\right)^{m-j} .
$$

