Quiz 1 Time: 15 minutes

Problem 1

Consider the following communication problem:

There are two equiprobable hypotheses. When H = 0, we transmit s = -b, where b is an arbitrary but fixed positive number. When H = 1, we transmit s = b.

The channel is as shown in the figure below, where $Z \sim \mathcal{N}(0, \sigma^2)$ represents the noise, $A \in \{0, 1\}$ represents a random attenuation (fading) with $P_A(0) = \frac{1}{2}$, and Y is the channel output. The random variables H, A and Z are independent.

(i) Find the decision rule that the receiver should implement to minimize the probability of error. Sketch the decision regions.

(ii) Calculate the probability of error $Pr\{e\}$, based on the above decision rule.