## Midterm

This is a closed-book exam, but a single page of hand-written notes is allowed. Calculators and cell-phones are not allowed.

You have 1 hour 45 minutes to solve the problems.

Try to do side calculations on a separate sheet and report well organized solutions. If we can't read it we can't grade it.

If you need additional pages, do not forget to write your name!

## Good Luck!!

Name: $\qquad$

| Problem 1 | $/ 13$ |
| :--- | ---: |
| Problem 2 | $/ 5$ |
| Problem 3 | $/ 6$ |
| Problem 4 | $/ 11$ |
| Total | $\mathbf{1 3 5}$ |

## 1. Bhattacharyya Bound (13 points)

When $Y \in \mathbb{R}$ is an continuous random variable, the Bhattacharyya bound states that

$$
\operatorname{Pr}\left\{Y \in \mathcal{B}_{i, j} \mid H=i\right\} \leq \sqrt{\frac{P_{H}(j)}{P_{H}(i)}} \int_{y \in \mathbb{R}} \sqrt{f_{Y \mid H}(y \mid i) f_{Y \mid H}(y \mid j)} d y
$$

where $i, j$ are two possible hypotheses and $\mathcal{B}_{i, j}=\left\{y \in \mathbb{R}: P_{H}(i) f_{Y \mid H}(y \mid i) \leq\right.$ $\left.P_{H}(j) f_{Y \mid H}(y \mid j)\right\}$. In this problem $\mathcal{H}=\{0,1\}$ and $P_{H}(0)=P_{H}(1)=0.5$.
(a) (2 points) Write a sentence that expresses the meaning of $\operatorname{Pr}\left\{Y \in \mathcal{B}_{0,1} \mid H=\right.$ $0\}$. (You may write in English or French. Use words that have operational meaning.)
(b) (2 points) Do the same but for $\operatorname{Pr}\left\{Y \in \mathcal{B}_{0,1} \mid H=1\right\}$. (Note that we have written $\mathcal{B}_{0,1}$ and not $\mathcal{B}_{1,0}$.)
(c) (3 points) Evaluate the right hand side of the Bhattacharyya bound for the special case $f_{Y \mid H}(y \mid 0)=f_{Y \mid H}(y \mid 1)$.
(d) (4 points) Evaluate the Bhattacharyya bound for the following (Laplacian noise) setting:

$$
\begin{aligned}
H=0: & Y=-a+Z \\
H=1: & Y=a+Z
\end{aligned}
$$

where $a \in \mathbb{R}_{+}$is a constant and $f_{Z}(z)=\frac{1}{2} \exp (-|z|), z \in \mathbb{R}$. Hint: it does not matter if you evaluate the bound for $H=0$ or $H=1$.
(e) (2 points) For which value of $a$ should the bound give the result obtained in (1c)? Verify that it does. Check your previous calculations if it does not.

## 2. Irrelevance (5 points)

Assume that $H$ is a random variable that corresponds to a hypothesis. Let $Y_{s}$ and $Y_{i}$ be two more random variables, that are observations.

Definition: We say that $H \rightarrow Y_{s} \rightarrow Y_{i}$ forms a Markov chain if

$$
f_{Y_{i} \mid H, Y_{s}}\left(y_{i} \mid i, y_{s}\right)=f_{Y_{i} \mid Y_{s}}\left(y_{i} \mid y_{s}\right)
$$

for all possible values of $y_{i}, i$ and $y_{s}$.
(a) (3 points) Show that $H \rightarrow Y_{s} \rightarrow Y_{i}$ forms a Markov chain if and only if $Y_{i} \rightarrow Y_{s} \rightarrow H$ forms a Markov chain, i.e., if and only if

$$
P_{H \mid Y_{s}, Y_{i}}\left(i \mid y_{s}, y_{i}\right)=P_{H \mid Y_{s}}\left(i \mid y_{s}\right)
$$

holds for all values of $i, y_{s}$ and $y_{i}$.
(b) (2 points) We know from the homework that if $f_{Y_{i} \mid H, Y_{s}}\left(y_{i} \mid i, y_{s}\right)$ does not depend on $i$ (in other words, if $H \rightarrow Y_{s} \rightarrow Y_{i}$ forms a Markov chain), then $Y_{s}$ is a sufficient statistic and $Y_{i}$ is irrelevant. Using part (a), this tells us that if $P_{H \mid Y_{s}, Y_{i}}\left(i \mid y_{s}, y_{i}\right)=P_{H \mid Y_{s}}\left(i \mid y_{s}\right)$ for all values of $i, y_{s}$ and $y_{i}$, then $Y_{s}$ is a sufficient statistic (and $Y_{i}$ is irrelevant).
Is this intuitive? Explain why / why not.

## 3. Antipodal Signaling (6 points)

Consider the following signal constellation:


Assume that $s_{1}$ and $s_{0}$ are used for communication over the Gaussian vector channel. More precisely:

$$
\begin{array}{ll}
H=0: & \boldsymbol{Y}=\boldsymbol{s}_{0}+\boldsymbol{Z} \\
H=1: & \boldsymbol{Y}=\boldsymbol{s}_{1}+\boldsymbol{Z}
\end{array}
$$

where $\boldsymbol{Z} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} I_{2}\right)$. Hence, $\boldsymbol{Y}$ is a vector with two components $\boldsymbol{Y}=$ $\left(Y_{1}, Y_{2}\right)$.
(a) (3 points) Argue why $Y_{1}$ is not a sufficient statistic.
(b) (3 points) Give a different signal constellation with two signals $\tilde{\boldsymbol{s}}_{0}$ and $\tilde{\boldsymbol{s}}_{1}$ such that, when using them in the above communication setting, $Y_{1}$ is a sufficient statistic.

## 4. Hypothesis Testing (11 points)

Consider a binary hypothesis testing problem in which the hypotheses $H=0$ and $H=1$ occur with probability $P_{H}(0)$ and $P_{H}(1)=1-P_{H}(0)$, respectively. The observation $\boldsymbol{Y}$ is a sequence of zeros and ones of length $2 k$, where $k$ is a fixed integer. When $H=0$, each component of $\boldsymbol{Y}$ is 0 or a 1 with probability $\frac{1}{2}$ and components are independent. When $H=1, \boldsymbol{Y}$ is chosen uniformly at random from the set of all sequences of length $2 k$ that have an equal number of ones and zeros. There are $\binom{2 k}{k}$ such sequences.
(a) (3 points) What is $P_{\boldsymbol{Y} \mid H}(\boldsymbol{y} \mid 0)$ ? What is $P_{\boldsymbol{Y} \mid H}(\boldsymbol{y} \mid 1)$ ?
(b) (3 points) Find a maximum likelihood decision rule. What is the single number you need to know about $\boldsymbol{y}$ to implement this decision rule?
(c) (2 points) Find a decision rule that minimizes the error probability.
(d) (3 points) Are there values of $P_{H}(0)$ and $P_{H}(1)$ such that the decision rule that minimizes the error probability always decides for only one of the alternatives? If yes, what are these values, and what is the decision?

