MIDTERM EXAM Closed book, one page of notes allowed Time limit: 110 minutes

Print Name

Problem	Score
#1	/ 25
#2	/ 25
#3	/ 25
#4	/ 25
Total	/ 100

Problem 1 (Warmup Problem: Background Material)

(a) Assume that X_1 and X_2 are independent random variables and that they are uniformly distributed in the interval [0, 1]. What is the probability that $X_1 + X_2 < 1$ and $X_2 \geq \frac{1}{2}$?

(b) Let $\phi(t) = A \frac{\sin \frac{\pi}{T}t}{\frac{\pi}{T}t}$, $t \in \mathbb{R}$. Sketch $\phi(t)$ and its Fourier transform $\phi_{\mathcal{F}}(f)$. Label your figures appropriately.

(c) Determine A so that $\phi(t)$ has unit energy.

Problem 2

Let $\boldsymbol{X} \sim \mathcal{N}(0, \sigma^2 I_2)$. For each of the three figures below, express the probability that \boldsymbol{X} lies in the shaded region. You may use the *Q*-function when appropriate.

Problem 3

Let $H \in \{0, 1, 2, 3\}$ and assume that when H = i you transmit the signal s_i shown in the figure. Under H = i, the receiver observes $\mathbf{Y} = s_i + \mathbf{Z}$.

- (a) In the above figure, draw the decoding regions assuming that $\mathbf{Z} \sim \mathcal{N}(0, \sigma^2 I_2)$ and that $P_H(i) = 1/4 \,\forall i$.
- (b) In the figure below, draw the decoding regions (qualitatively) assuming $\mathbf{Z} \sim \mathcal{N}(0, \sigma^2 I)$ and $P_H(0) = P_H(2) > P_H(1) = P_H(3)$. Justify your answer.

(c) Assume again that $P_H(i) = 1/4 \quad \forall i \text{ and that } \mathbf{Z} \sim \mathcal{N}(0, K)$, where $K = \begin{pmatrix} \sigma^2 & 0 \\ 0 & 4\sigma^2 \end{pmatrix}$. How do you decode now? Justify your answer.

Problem 4

You are taking a multiple choice exam. Question number 5 allows for two possible answers. According to your first impression, answer 1 is correct with probability 1/4 and answer 2 is correct with probability 3/4.

You would like to maximize your chance of giving the correct answer and you decide to have a look at what your left and right neighbors have to say.

The left neighbor has answered $\hat{H}_L = 1$. He is an excellent student who has a record of being correct 90% of the time.

The right neighbor has answered $\hat{H}_R=2\,.$ He is a weaker student who is correct 70% of the time.

(a) You decide to use your first impression as a prior and to consider \hat{H}_L and \hat{H}_R as observations. Describe the corresponding hypothesis testing problem. Note: Be concise and clear. The point here is to show that you know what constitutes relevant information.

(b) What is your answer \hat{H} ? Justify it.