MIDTERM EXAM
Closed book, one page of notes allowed
Time limit: 110 minutes

Print Name

Problem	Score
$\# 1$	$/ 25$
$\# 2$	$/ 25$
$\# 3$	$/ 25$
$\# 4$	$/ 25$
Total	$/ 100$

Problem 1 (Warmup Problem: Background Material)
(a) Assume that X_{1} and X_{2} are independent random variables and that they are uniformly distributed in the interval $[0,1]$. What is the probability that $X_{1}+X_{2}<1$ and $X_{2} \geq \frac{1}{2}$?
(b) Let $\phi(t)=A \frac{\sin \frac{\pi}{T} t}{\frac{\pi}{T} t}, t \in \mathbb{R}$. Sketch $\phi(t)$ and its Fourier transform $\phi_{\mathcal{F}}(f)$. Label your figures appropriately.
(c) Determine A so that $\phi(t)$ has unit energy.

Problem 2
Let $\boldsymbol{X} \sim \mathcal{N}\left(0, \sigma^{2} I_{2}\right)$. For each of the three figures below, express the probability that \boldsymbol{X} lies in the shaded region. You may use the Q-function when appropriate.

(c)

Problem 3

Let $H \in\{0,1,2,3\}$ and assume that when $H=i$ you transmit the signal s_{i} shown in the figure. Under $H=i$, the receiver observes $\boldsymbol{Y}=\boldsymbol{s}_{i}+\boldsymbol{Z}$.

(a) In the above figure, draw the decoding regions assuming that $\mathbf{Z} \sim \mathcal{N}\left(0, \sigma^{2} I_{2}\right)$ and that $P_{H}(i)=1 / 4 \forall i$.
(b) In the figure below, draw the decoding regions (qualitatively) assuming $\boldsymbol{Z} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$ and $P_{H}(0)=P_{H}(2)>P_{H}(1)=P_{H}(3)$. Justify your answer.

(c) Assume again that $P_{H}(i)=1 / 4 \forall i$ and that $\boldsymbol{Z} \sim \mathcal{N}(0, K)$, where $K=\left(\begin{array}{cc}\sigma^{2} & 0 \\ 0 & 4 \sigma^{2}\end{array}\right)$. How do you decode now? Justify your answer.

Problem 4

You are taking a multiple choice exam. Question number 5 allows for two possible answers. According to your first impression, answer 1 is correct with probability $1 / 4$ and answer 2 is correct with probability $3 / 4$.
You would like to maximize your chance of giving the correct answer and you decide to have a look at what your left and right neighbors have to say.
The left neighbor has answered $\hat{H}_{L}=1$. He is an excellent student who has a record of being correct 90% of the time.
The right neighbor has answered $\hat{H}_{R}=2$. He is a weaker student who is correct 70% of the time.
(a) You decide to use your first impression as a prior and to consider \hat{H}_{L} and \hat{H}_{R} as observations. Describe the corresponding hypothesis testing problem. Note: Be concise and clear. The point here is to show that you know what constitutes relevant information.
(b) What is your answer \hat{H} ? Justify it.

