ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Principles of Digital Communications:	
Summer Semester 2007	

Assignment date: May 31, 2007 Due date: June 07, 2007

Homework 9

Problem 1. (Nyquist Criterion) Consider transmitting

$$S(t) = \sum_{i=-\infty}^{\infty} X_i \psi(t - iT)$$

across an AWGN channel, where $\psi(t)$ is a Nyquist pulse. We know that an optimal thing to do at the receiver front end is to send the received signal R(t) through the filter with impulse response $\psi^*(-t)$ and sample the filter output Y(t) at time t = iT.

(a) Show that in absence of noise, the filter output Y(iT) equals X_i .

(b) Now assume that you transmit $S(t) = \sum_{i=-\infty}^{\infty} X_i p(t-iT)$ and let the received signal through a filter of real-valued impulse response q(t). You would like to retain the property that the filter output at time t = iT be X_i in absence of noise. Show that this is equivalent to

$$\int_{-\infty}^{\infty} p(kT+t)q(-t)dt = \delta(k)$$

(c) Show that the equivalent condition in the frequency domain is

$$\sum_{l=-\infty}^{\infty} p_{\mathcal{F}}(f - \frac{l}{T})q_{\mathcal{F}}^*(f - \frac{l}{T}) = T \quad \text{for} - \frac{1}{2T} \le f \le \frac{1}{2T}$$

Problem 2. Lecture notes Problem 2 (Nyquist Pulses) of Section 5.5

Problem 3. Lecture notes Problem 3 (Nyquist Pulses) of Section 5.5