ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Principles of Digital Communications:
Summer Semester 2007
Assignment date: March 29, 2007
Due date: April 5, 2007

Homework 3

Problem 1. (Rayleigh distribution)

Let X and Y be two independent, zero-mean, unit-variance, Gaussian random variables: $(X, Y)=\mathcal{N}\left(0, \boldsymbol{I}_{2}\right)$. Let R and Θ be the corresponding polar coordinates, i.e., $X=R \cos \Theta$ and $Y=R \sin \Theta$. Find the probability density functions $f_{R, \Theta}, f_{R}$, and f_{Θ}.

Hint: Try do solve this problem without looking up formulas. First write down the expression of $f_{R, \Theta}$ as a function of $f_{X, Y}$ assuming that you have a linear transformation of the kind $(X, Y)^{T}=A(R, \Theta)^{T}$ for some 2×2 invertible matrix A. See the Appendix of the lecture notes, Chapter 2, if you don't know how to do this from memory using the hints given in class. Recall that $\operatorname{det} A$ equals $\frac{1}{\operatorname{det} A^{-1}}$, which means that you may work with the determinant of A or with that of A^{-1}, whichever is more convenient. Next, instead of A use the Jacobian J of the transformation that maps R, Θ into X, Y. The Jacobian is the matrix that maps $(d R, d \Theta)^{T}$ into $(d X, d Y)^{T}$.

Problem 2. Lecture notes Problem 7 (Transformation of random vectors) of Section 2.9
Problem 3. Lecture notes Problem 8 (Theorem of irrelevance and Sufficient statistics) of Section 2.9

Problem 4. Lecture notes Problem 9 of Section 2.9

