ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Principles of Digital Communications:	Assignment date:	June 07,	2007
Summer Semester 2007	Due date:	June 14,	2007

Homework 10

Problem 1. Lecture notes Problem 1 (*PSD of the Convolutional Code Considered in Class*) of Section 6.6

Typo: Just after equation (6.8), it should read $R_{\psi}(\tau) = \int_{-\infty}^{\infty} \psi(t+\tau)\psi(t)dt$.

Problem 2. Consider the transmitter shown in Figure 1, when $\dots D_{-i}, D_i, D_{i+1}, \dots$ is a sequence of independent and uniformly distributed random variables taking value in $\{\pm 1\}$.

Figure 1: Encoder

The transmitted signal is

$$s(t) = \sum_{i=-\infty}^{\infty} X_i p(t - iT - \Theta),$$

where Θ is a random variable, uniformly distributed in [0, T].

$$X_{i} = D_{i} - D_{i-1}$$
$$p(t) = 1_{\left[-\frac{T}{2}, \frac{T}{2}\right]}(t).$$

- (a) Determine $R_X[k] = E[X_{i+k}X_i].$
- (b) Determine $R_p(\tau) = \int_{-\infty}^{\infty} p(t+\tau)p(t)dt$.
- (c) Determine the autocorrelation function $R_s(\tau)$ of the signal s(t).
- (d) Determine the power spectral density $S_s(f)$.

Problem 3. Lecture notes Problem 3 (Trellis Section) of Section 6.6

Problem 4. Lecture notes Problem 4 (Maximum Likelihood Path) of Section 6.6