ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Homework 1

Problem 1. (Uncorrelation vs. Independence)
Let X and Y be two random variables.
(i) When are X and Y uncorrelated? When are they independent? Write down the definitions.
(ii) Show that if X and Y are independent, they are also uncorrelated.
(iii) We first define two new random variables U and V :

$$
\begin{aligned}
& U=\left\{\begin{array}{lll}
0 & \text { with prob. } & \frac{1}{2} \\
1 & \text { with prob. } & \frac{1}{2}
\end{array}\right. \\
& V=\left\{\begin{array}{lll}
0 & \text { with prob. } & \frac{1}{2} \\
1 & \text { with prob. } & \frac{1}{2}
\end{array}\right.
\end{aligned}
$$

where U and V are independent. Now, assume that X and Y are defined as follows: $X=U+V$ and $Y=|U-V|$.
Are X and Y independent? Compute the covariance of X and Y. What do you conclude?

Problem 2. (Properties of the Q Function)
Prove properties (a) through (d) of the Q function defined in the lecture notes, Section 2.3.
You can use the following hint to help you with property (d):
Hint: Define $\Phi(t)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}}$. Then, integrate $\int_{x}^{\infty} \Phi(t) \frac{1}{t^{2}} d t$ by parts.
The resulting equality can be used to prove both inequalities in (d). Start by proving the right-hand inequality.

Problem 3. (Playing Darts)

Assume that you are throwing darts at a target. We assume that the target is onedimensional, i.e., that the darts all end up on a line. The "bulls eye" is in the center of the line, and we give it the coordinate 0 . The position of a dart on the target can then be measured with respect to 0 .

We assume that the position X_{1} of a dart that lands on the target is a random variable that has a Gaussian distribution with variance σ_{1}^{2} and mean 0 .
Assume now that there is a second target, which is further away. If you throw dart to that target, the position X_{2} has a Gaussian distribution with variance σ_{2}^{2} (where $\sigma_{2}^{2}>\sigma_{1}^{2}$) and mean 0 .

You play the following game: You toss a coin which gives you "head" with probability p and "tail" with probability $1-p$ for some fixed $p \in[0,1]$. We can model a coin as a Bernoulli random variable Z. If $Z=1$, you throw a dart onto the first target. If $Z=0$, you aim the second target instead. Let X be the relative position of the dart with respect to the center of the target that you have chosen.
(i) Write down X in terms of X_{1}, X_{2} and Z.
(ii) Compute the variance of X.

Bonus question: Is the distribution of X a Gaussian (Note that X is not a linear combination of X_{1} and X_{2})? Explain.
(iii) Let $S=|X|$ be the score, which is given by the distance of the dart to the center of the target (that you picked using the coin). Compute the average score $\mathbb{E}[S]$.

Problem 4. Let $\boldsymbol{X} \sim \mathcal{N}\left(0, \sigma^{2} I_{2}\right)$. For each of the three figures below, express the probability that \boldsymbol{X} lies in the shaded region. You may use the Q-function when appropriate.

Figure 1: Regions

Problem 5. (Signal Energy)

In this problem we give you the opportunity to compute expected values. Even though the exercise may just look to you like a drill, it will turn out to be a useful calculation. In each of the two figures of Figure 2 each point (circle) s_{i} represents a signal and the square $\left|s_{i}\right|^{2}$ of the distance between the origin and the point represents the energy of that signal. The axis on the first figure is \mathbb{R}, and the axes in the second figure are \mathbb{R}^{2}.

Assume that each signal is used with the same probability.

Figure 2: Signals for Problem 5
(i) For each of the two figures compute the average energy $\mathbb{E}\left[\left|s_{i}\right|^{2}\right]$.
(ii) Compute also $\mathbb{E}\left[s_{i}\right]$ for each figure.

Problem 6. (Simple Hypothesis Testing)
In this example there are two hypotheses, $H=0$ and $H=1$ which occur with probabilities $p_{H}(0)=p_{0}$ and $p_{H}(1)=1-p_{0}$, respectively. The observable is $y \in \mathbb{N}_{0}$, i.e. y is a nonnegative integer. Under hypothesis $H=0, y$ is distributed according to a Poisson law with parameter λ_{0}, i.e.

$$
\begin{equation*}
p_{Y \mid H}(y \mid 0)=\frac{\lambda_{0}^{y}}{y!} e^{-\lambda_{0}} \tag{1}
\end{equation*}
$$

Under hypothesis $H=1$,

$$
\begin{equation*}
p_{Y \mid H}(y \mid 1)=\frac{\lambda_{1}^{y}}{y!} e^{-\lambda_{1}} . \tag{2}
\end{equation*}
$$

This example is in fact modeling the reception of photons in an optical fiber (for more details, see Example 4 of Section 2.2 of class notes).
(i) Derive the MAP decision rule by indicating likelihood and log-likelihood ratios.

Hint: The direction of an inequality changes if both sides are multiplied by a negative number.
(ii) Derive the formula for the probability of error of the MAP decision rule.
(iii) For $p_{0}=1 / 3, \lambda_{0}=2$ and $\lambda_{1}=10$, compute the probability of error of the MAP decision rule. You may want to use a computer program to do this.
(iv) Repeat (iv) with $\lambda_{1}=20$ and comment.

