ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Principles of Digital Communications:	Assignment date: March 15, 2007
Summer Semester 2007	Due date: March 22, 2007

Homework 1

Problem 1. (Uncorrelation vs. Independence)

Let X and Y be two random variables.

- (i) When are X and Y uncorrelated? When are they independent? Write down the definitions.
- (ii) Show that if X and Y are independent, they are also uncorrelated.
- (*iii*) We first define two new random variables U and V:

$$U = \begin{cases} 0 & \text{with prob.} & \frac{1}{2} \\ 1 & \text{with prob.} & \frac{1}{2}, \end{cases}$$
$$V = \begin{cases} 0 & \text{with prob.} & \frac{1}{2} \\ 1 & \text{with prob.} & \frac{1}{2}, \end{cases}$$

where U and V are independent. Now, assume that X and Y are defined as follows: X = U + V and Y = |U - V|.

Are X and Y independent? Compute the covariance of X and Y. What do you conclude?

Problem 2. (Properties of the Q Function)

Prove properties (a) through (d) of the Q function defined in the lecture notes, Section 2.3. You can use the following hint to help you with property (d):

Hint: Define $\Phi(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$. Then, integrate $\int_x^{\infty} \Phi(t)\frac{1}{t^2}dt$ by parts.

The resulting equality can be used to prove both inequalities in (d). Start by proving the right-hand inequality.

Problem 3. (Playing Darts)

Assume that you are throwing darts at a target. We assume that the target is onedimensional, *i.e.*, that the darts all end up on a line. The "bulls eye" is in the center of the line, and we give it the coordinate 0. The position of a dart on the target can then be measured with respect to 0.

We assume that the position X_1 of a dart that lands on the target is a random variable that has a Gaussian distribution with variance σ_1^2 and mean 0.

Assume now that there is a second target, which is further away. If you throw dart to that target, the position X_2 has a Gaussian distribution with variance σ_2^2 (where $\sigma_2^2 > \sigma_1^2$) and mean 0.

You play the following game: You toss a coin which gives you "head" with probability p and "tail" with probability 1 - p for some fixed $p \in [0, 1]$. We can model a coin as a Bernoulli random variable Z. If Z = 1, you throw a dart onto the first target. If Z = 0, you aim the second target instead. Let X be the relative position of the dart with respect to the center of the target that you have chosen.

- (i) Write down X in terms of X_1 , X_2 and Z.
- (ii) Compute the variance of X.

Bonus question: Is the distribution of X a Gaussian (Note that X is not a linear combination of X_1 and X_2)? Explain.

(*iii*) Let S = |X| be the score, which is given by the distance of the dart to the center of the target (that you picked using the coin). Compute the average score $\mathbb{E}[S]$.

Problem 4. Let $\mathbf{X} \sim \mathcal{N}(0, \sigma^2 I_2)$. For each of the three figures below, express the probability that \mathbf{X} lies in the shaded region. You may use the *Q*-function when appropriate.

Figure 1: Regions

Problem 5. (Signal Energy)

In this problem we give you the opportunity to compute expected values. Even though the exercise may just look to you like a drill, it will turn out to be a useful calculation. In each of the two figures of Figure 2 each point (circle) s_i represents a signal and the square $|s_i|^2$ of the distance between the origin and the point represents the energy of that signal. The axis on the first figure is \mathbb{R} , and the axes in the second figure are \mathbb{R}^2 .

Assume that each signal is used with the same probability.

Figure 2: Signals for Problem 5

(i) For each of the two figures compute the average energy $\mathbb{E}[|s_i|^2]$.

(*ii*) Compute also $\mathbb{E}[s_i]$ for each figure.

Problem 6. (Simple Hypothesis Testing)

In this example there are two hypotheses, H = 0 and H = 1 which occur with probabilities $p_H(0) = p_0$ and $p_H(1) = 1 - p_0$, respectively. The observable is $y \in \mathbb{N}_0$, i.e. y is a nonnegative integer. Under hypothesis H = 0, y is distributed according to a Poisson law with parameter λ_0 , i.e.

$$p_{Y|H}(y|0) = \frac{\lambda_0^y}{y!} e^{-\lambda_0}.$$
 (1)

Under hypothesis H = 1,

$$p_{Y|H}(y|1) = \frac{\lambda_1^y}{y!} e^{-\lambda_1}.$$
(2)

This example is in fact modeling the reception of photons in an optical fiber (for more details, see Example 4 of Section 2.2 of class notes).

(i) Derive the MAP decision rule by indicating likelihood and log-likelihood ratios. Hint: The direction of an inequality changes if both sides are multiplied by a negative number.

(ii) Derive the formula for the probability of error of the MAP decision rule.

(*iii*) For $p_0 = 1/3$, $\lambda_0 = 2$ and $\lambda_1 = 10$, compute the probability of error of the MAP decision rule. You may want to use a computer program to do this.

(iv) Repeat (iv) with $\lambda_1 = 20$ and comment.