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Chapter 1

Introduction and Objectives

The evolution of communication technology during the past few decades has been im-
pressive. In spite of an enormous progress, many of the challenges still lay ahead of us.
While any prediction of the next big technological revolution is likely to be wrong, it is
safe to say that communication devices will become smaller, lighter, more powerful, more
integrated, more ubiquitous, and more reliable that they are today. Perhaps one day
the input/output interface will separate form the communication/computation hardware.
The former will be the only part that we actually carry around and it will communi-
cate wirelessly with the latter. Perhaps the communication/computation hardware will
be part of the infrastructure. It will be built into cars, trains, airplanes, public places,
homes, offices, etc. With the the input/output device that we carry around we will have
virtually unlimited access to communication and computation facilities. Search engines
may be much more powerful than they are today, giving instant access to any information
digitally stored. The input/output device may contain all of our preferences so that, for
instance, when we sit down in front of a computer, we see the environment that we like
regardless of location (home, office, someone else’s desk) and regardless of the hardware
and operating system. The input device may also allow us to unlock doors and make
payments –hence making keys, credit cards, and wallets obsolete. Getting there will re-
quire joint efforts form almost all branches of electrical engineering, computer science,
and system engineering.

In this course we focus on the system aspects of digital communications. Digital commu-
nications is a rather unique field in engineering in which theoretical ideas have had an
extraordinary impact on actual system design. Our goal is to get acquainted with some of
these ideas. Hopefully, you will appreciate the way that many of the mathematical tools
you have learned so far will turn out to be exactly what we need. These tools include
probability theory, stochastic processes, linear algebra, and Fourier analysis.

We will focus on systems that consist of a single transmitter, a channel, and a receiver
as shown in Figure 1.1. The channel filters the incoming signal and corrupts it with
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Figure 1.1: Basic point-to-point communication system over a bandlimited
Gaussian channel.

noise. The noise is Gaussian since it represents the contribution of various noise sources.1

The filter in the channel model has both a physical and a conceptual justification. The
conceptual justification stems from the fact that most wireless communication systems
are subject to a license that dictates, among other things, the frequency band that the
signal is allowed to occupy. A convenient way to enforce this constraint is to tell the
system designers that the channel contains an ideal filter that blocks everything outside
the intended band. The physical reason has to do with the observation that the signal
emitted from the transmit antenna typically encounters obstacles that create reflections
and scattering. Hence the receive antenna may capture the superposition of a number of
delayed and attenuated replicas of the transmitted signal (plus noise). It is a straightfor-
ward exercise to check that this physical channel is linear and time-invariant. Thus it may
be modeled by a linear filter as shown in the figure.2 In some cases the transmit and/or
the receive antennas also filter the signal. This is the case for instance when the signal’s
bandwidth is sufficiently large that the antenna characteristic is not constant over the
frequency interval spanned by the signal. The filter in Figure 1.1 accounts for these and
possibly other linear time-invariant transformations that acts upon the communication
signals as it travels from the sender to the receiver. The channel model of Figure 1.1
is meaningful for both wireline and wireless communication chanels. It is referred to as
bandlimited Gaussian channels.

Since communication means different things for different people, we need to clarify the
role of the transmitter/receiver pair depicted in Figure 1.1. For the purpose of this class
a transmitter implements a mapping between a message set and a signal set, both of the
same cardinality, say m . The number m of elements of the message set is important
but the nature of its elements is not. (More on this later.) Without loss of generality
we can let the message set consist of the integers {0, 1, . . . ,m− 1} . The elements of the
message set are called messages. There is a one-to-one correspondence between messages

1Individual noise sources do not necessarily have Gaussian statistics. However, due to the central limit
theorem, their aggregate contribution is often quite well approximated by a Gaussian random process.

2If the scattering and reflecting objects move with respect to the transmit/receive antennae then the
filter is time-varying but this case is deferred to the advanced digital communication class.
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and elements of the signal set. The “nature” (e.g. discrete vs continuous time) of the
signals is important since signals have to be compatible with the channel. The channel is
always assumed to be given to the designer who has no control over it. By assumption, the
designer can only control the design of the transmitter/receiver pair. A user communicates
by selecting a message i ∈ {0, 1, . . . ,m − 1} which is converted by the transmitter into
the corresponding signal si . The channel reacts to the signal by producing the observable
y . Based on y , the receiver generates an estimate î(y) of i . Hence the receiver is a map
from the space of channel output signals to the message set. Hopefully i = î most of the
time. When this is not the case we say that an error event occurred. In all situations
of interest to us it is not possible to reduce the probability of error to zero. This is so
since, with positive probability, the channels is capable of producing an output y that
could have semmed from more than one message. One of the performance measures of
a transmitter/receiver pair for a given channel is thus the probability of error. Another
performance measure is the rate at which we communicate. Conceptually, we may label
every message with a unique sequence of logm bits so that communicating the message
is equivalent to communicating the corresponding bit sequence. (This is why earlier we
said that the nature of the messages is not relevant). Hence we are sending the equivalent
of logm bits every time we use the channel. By increasing the value of m we increase the
rate in bits per channel use but, as we will see, under normal circumstances this increase
can not be done indefinitely without increasing the probability of error.

At the end of this course you should have a good understanding of a basic communication
system and be able to make sensible design choices. In particular, you should know what
a receiver does to minimize the probability of error, be able to do a quantitative analysis
of some of the most important performance figures, and know which tradeoffs you have
as a system designer.

A few words about the big picture and the approach that we will take are in order. We
will discover that a natural way to design, analyze, and implement a transmitter/receiver
pair is in terms of the modules shown in Figure 1.2. These modules allow us to focus on
selected issues while hiding others. For instance, at the very bottom level we exchange
messages. At this level me may think of all modules as being inside a “black box” that
hides all the implementation details and lets us see only what the user has to see from
the outside. The “black box” is an abstract channel model that takes messages and
delivers messages –not always without making errors. At this level of granularity the
visible performance figures are the cardinality of the message set, how long we have to
wait until we are allowed to choose the next message, and the probability of error. The
first two determine how many bits we send per unit of time, i.e., the rate at which we
communicate. At the top level of Figure 1.2 we focus on the characteristics of the actual
signals being sent over the physical medium, such as the average power of the transmitted
signal and the frequency band it occupies. We will see that at the second level from the
bottom we communicate n -tuples. It is at this level that we will understand the heart
of the receiver. We will understand how the receiver should base its decision so as to
minimize the probability of error and see how to compute the resulting error probability.
Finally, one layer up we communicate using low-frequency (as opposed to radio frequency)
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Figure 1.2: Decomposed transmitter and receiver.

signals. Separating the top two layers is important for implementation purposes.

There is more than one way to organize the discussion around the modules of Figure 1.2.
Following the signal path, i.e., starting from the first module of the transmitter and
working our way through the system until we reach the final stage of the receiver would not
be a good idea since it makes little sense to study the transmitter design without having
an appreciation of the task and limitations of a receiver. We will instead make many
passes over the block diagram of Figure 1.2, each time at a different level and focussing
on different issues as discussed in the previous paragraph, but each time considering the
sender and the receiver together. We will start with the channel seen by the bottom
modules in Figure 1.2. This approach has the advantage that you will quickly be able
to appreciate what the transmitter and the receiver should do. One may argue that this
approach has the disadvantage of asking the student to accept an abstract channel model
that seems to be oversimplified (It is not, but this will not be immediately clear). On the
other hand one can also argue in favor of the pedagogical value of starting with highly
simplified models. Shannon, the founding father of modern digital communication theory
and one of the most profound engineer and mathematician of the 20th century, was knows
to solve difficult problems by first reducing the problem to a much simpler version that
he could almost solve “by inspection.” Only after having familiarized himself with the
simpler problem would he work his way back to the next level of difficulty.

The choice of material covered in this course is by now more or less standard for an
introductory course on digital communications. The approach depicted in Figure 1.2 has
been made popular by J.M. Wozencraft and I. M. Jacobs in Principles of Communication
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Engineering –a textbook appeared in 1965 . However, the field has evolved since then and
these notes reflect such evolution. Some of the exposition has benefited from the notes
Introduction to Digital Communication, written by Profs. A. Lapidoth and R. Gallager
for the MIT course Nr. 6.401/6.450, 1999. I am indebted to them for letting me use their
notes during the first few editions of this course.

There is only so much that one can do in one semester. EPFL offers various possibilities for
those who want to know more about digital communications and related topics. Classes for
which this course is a recommended prerequisite are Advanced Digital Communications,
Information Theory and Coding and Coding Theory. For the student interested in hands-
on experience, EPFL offers Software-Defined Radio: A Hands On Course.

Networking is is another branch of communications that has developed almost indepen-
dently of the material treated in this class. It relies on quite different set of mathematical
models and tools. Networking assumes that there is a network of bit pipes which is reli-
able most of the time but that can fail once in a while, e.g., due to network congestion,
hardware failure, queue overflow, etc. Queues are used to temporarily store packets when
the next link is congested. Networking deals with problems such as finding a route for
a packet, computing the delay incurred by a packet as it goes from source to destina-
tion considering the queueing delay and the fact that packets are retransmitted if their
reception is not acknowledged. We will not be dealing with networking problems in this
class.

We conclude this introduction with a very brief overview of the various chapters. Not
everything in this paragraph will make sense to you now. Nevertheless we advise you to
read it now and read it again when you feel that it is time to step back and take a look at
the “big picture.” This paragraph will also give you an idea of which fundamental concepts
will play a role in this course. Chapter 2 deals with the vector channel case of Figure 1.2.
The emphasis will be on the design of an optimal Vector Receiver, assuming that the
Vector Transmitter and the Vector Channel are given. This is an application of what is
know in the statistical literature as hypothesis testing (to be developed in Chapter 2).
After a rather general start we will spend some time on the Gaussian Vector Channel. (In
Chapter 8 you will realize that the Gaussiann Vector Channel is a cornerstone of digital
communications.) In Chapter 3 we will focus on the Waveform Generator and on the
Baseband Front-End of Figure 1.2. The mathematical tool behind the description of the
Waveform Geneartor is the notion of orthonormal expansion from linear algebra. We will
fix an orthonormal basis and we will let the output of the Vector Transmitter be the vector
of coefficients that determine the signal produced by the Waveform Transmitter (with
respect to the given orthonormal basis). The Baseband Front-End of the receiver reduces
the received waveform to a vector (n -tuple) that contains just as much information as
needed to decide about the message selected by the sender. To do so the Baseband Front-
End projects the received waveform onto each element of mentioned orthonormal basis.
The resulting n -tuple is passed to the Vector Receiver. Together the Vector Transmitter
and the Waveform Generator form the Waveform Transmitter. Together the Baseband
Front-End and the Vector Receiver form the Waveform Receiver. What we do in Chapter
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3 holds irrespectively of the specific set of signals that we use to communicate. Chapter 4
deals with general high level implications of a specific signal set. Chapter 5 deals with the
problem of choosing a convenient orthonormal basis for the Waveform Generators, namely
one that leads to signals that have a desirable power spectral density and that significantly
simplifies the complexity of the Baseband Front-End. The main concept here is what is
called Nyquist criterion. Chapter 6 deals with the Up/Down Converters. The idea is to
learn how to shift the spectrum of the transmitted signal so that we can place its center
frequency at any desired location in the frequency axis, without changing what we have
called the Waveform Transmitter and the Waveform Receiver. This will be done using
one of the fundamental properties of Fourier transforms. Given our ability to shift the
center frequency of the transmitted signal to any desired location, it makes sense to let the
Waveform Transmitter and the Waveform Receiver operate in some fixed frequency range
if this simplifies their implementation. Implementing signal processing (amplification,
filtering, multiplication of signals, etc.) becomes more and more challenging as the center
frequency of the signals being processed increases. This is so since simple wires meant to
carry the signal inside the circuit may act as transmit antenna and irradiate the signal.
This may cause all kind of problems, including the fact that signals that signals get
mixed “in the air” and, even worse, are reabsorbed into the circuit by some short wire
that acts as receive antenna causing interference, oscillations due to unwanted feedback,
etc. To minimize such problems, it is common practice to let the Waveform Transmitter
and Waveform Receiver operate at “baseband”, i.e. process signals that have f = 0
as their center frequency. As it turns out, the baseband representation of a general
signal is complex-valued, even if the signal being represented is real-valued. This means
that the Waveform Transmitter/Receiver pairs have to deal with complex-valued signals.
This is not a problem per se. In fact working with complex-valued signals simplifies the
notation. However, it requires a small overhead in terms of having to learn how to deal
with complex-valued stochastic processes and complex-valued random vectors. Dealing
with complex-valued Gaussian processes and vectors is the topic of Chapter 7. Chapter 8
“closes the loop” by showing that the channel “seen” by the Vector Transmitter and the
Vector Receiver is indeed the abstract Gaussian Vector Channel that we have assumed
in Chapter 2. To emphasize the importance of the Vector Channel we mention that in a
typical information theory course (mandatory at the master-level at EPFL) as well as in
a typical coding theory course (offered at EPFL in the Ph.D. program), the channel is a
Vector Channel (perhaps not called this way) and one takes it for granted that the student
knows where it comes from. (The material treated in this class is also assumed as being
assimilated in Advanced Digital Communications as well as in Software-Defined Radio:
A Hands on Course, both of which are offered at EPFL at the master level.) Chapter
9 contains is a case study on coding. The communication model is that of Chapter 2
with the Vector Channel being Gaussian. The Vector Transmitter will incorporate a
convolutional encoder and the Vector Receiver will be based on the Viterbi algorithm.
The performance of the resulting scheme will be analyzed and compared to the uncoded
case.



Chapter 2

Optimal Receivers for Vector Channels

2.1 Introduction

As pointed out in the introduction, we will study point-to-point communications from
various abstraction levels. In this chapter we will be dealing with the vector channel. In
the next chapter it will become clear why the vector channel is an important abstraction
model. For now it suffices to say that it is the channel that we see from the input to the
output of the dotted box in Figure 2.1. The goal of this chapter is to understand how to
design and analyze the vector receiver when the channel and the transmitter are given.
The channel considered in this chapter may be more general than the vector channel of
Figure 2.1.

The communication system of interest in this chapter is depicted in Figure 2.2. Its
components are:

• The source: It is responsible to produce the message H ∈ H = {0, 1, . . . , (m − 1)} .
The task of the receiver would be extremely simple if the source selected the message
according to some deterministic rule. In this case the receiver could reproduce the
source message by following the same algorithm and there would be no need for a
communication system. For this reason, in communication we always assume that
the source is modeled by a random variable, here denoted by the capital letter H .
As usual, a random variable taking values on a finite alphabet is described by its
probability mass function PH(i) , i ∈ H . In most cases of interest to us, H is
uniformly distributed and/or m = 2.

• The transmitter: It is a mapping from H to S = {s0, s1, . . . , sm−1} where si ∈ C
n

for some n . (We will start with si ∈ R
n but we will see in the last chapter that it is

crucial that we allow for si ∈ C
n ).

• The channel: It is described by the probability density of the output for each of the

9
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Figure 2.1: Vector channel abstraction.
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possible inputs. When the channel input is si , the probability density of Y will be
denoted by fY |S(y|si).

• The receiver: The receiver’s task is to “guess” H from Y . The decision made by
the receiver is denoted by Ĥ . Unless specified otherwise, the receiver will always
be designed to minimize the probability of error defined as the probability that Ĥ
differs from H . This is the so-called hypothesis testing problem that comes up in
various contexts (not only in communication).

First we give a few examples.

Example 1. A common source model consist of H = {0, 1} and PH(0) = PH(1) = 1/2 .
This models individual bits of, say, a file. Alternatively, one could model an entire file of,
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say, 1 Mbit by saying that H = {0, 1, . . . , (2106 − 1)} and PH(i) = 1

2106
, i ∈ H .

Example 2. A transmitter for a binary source could be a map from H = {0, 1} to
S = {−a, a} for some real-valued constant a . Alternatively, a transmitter for a 4-ary
source could be a map from H = {0, 1, 2, 3} to S = {a, ia,−a,−ia} , where i =

√
−1 .

Example 3. The channel model that we will use mostly in this chapter is the additive
white Gaussian (AWGN) channel that maps a channel input s ∈ R

n into Y = s + Z ,
where Z is a Gaussian random vector with independent components.

Specifying the decision rule implemented by the receiver is straightforward once we un-
derstand the hypothesis testing problem studied in the next section.

2.2 Hypothesis Testing

Detection, decision, and hypothesis testing are all synonyms. They refer to the problem
of deciding the outcome of a random variable H that takes values on a finite alphabet
H = {0, 1, . . . ,m−1} , from the outcome of some related random variable Y . The random
variable H is called the Hypothesis and Y the observation.

The problem that a receiver has to solve is a detection problem in the above sense. Here
the hypothesis H is the message selected by the source. The transmitter sends a signal
(typically a distinct signal for each letter of H ) and the receiver observes the channel
response Y . The receiver decides the value of H based on Y . The receiver’s decision
will be denoted by Ĥ . We wish to make Ĥ = H , but this is not always possible. The
goal is to devise a decision that makes Pc = Pr{Ĥ = H} as large as possible.1

The standard assumption is that we know the a priori probability PH and for each i ∈ H
we know the conditional probability density function2 (pdf) fY |H(y|i) of Y .

Example 4. Here is a good example of a typical hypothesis testing problem. The problem
is that of communicating one bit of information (or more generally a sequence of bits)
across an optical fiber as shown in the following picture. The bit being transmitted is
modeled by the random variable H ∈ {0, 1} , PH(0) = 1/2 . If H = 1 , we switch on
a LED whose light is carried across an optical fiber to a photodetector at the receiver
front end. The photodetector outputs the number of photons Y ∈ N it detects. The
problem is to decide whether H = 0 or H = 1 . Our decision may only be based on
whatever prior information we have about the model and on the actual observation y .
What makes the problem interesting is that it is impossible to determine H from Y with
certainty. Even if the LED is off, the detector is likely to detect some photons (e.g. due

1 Pr is a short-hand for probability of the enclosed event.
2In most cases of interest in communication, the random variable Y is continuous. That’s why in

the above discussion we have implicitly assumed that, given H = i , Y has a pdf fY |H(y|i) . If Y is a
discrete random variable, then we assume that we know the conditional probability PY |H(y|i) .



12 Chapter 2.

to “ambient light”). A good assumption is that Y is Poisson distributed with intensity λ
that depends on whether the LED is on or off. Mathematically, the situation is as follows:

H = 0, Y ∼ PY |H(y|0) =
λy0
y!
e−λ0

H = 1, Y ∼ PY |H(y|1) =
λy1
y!
e−λ1

We read the first row as follows: “When the hypothesis is H = 0 then the observable Y
is Poisson distributed with intensity λ0 ”.

The problem of deciding the value of H from the observable Y when we know the
distribution of H and that of Y for each value of H is a standard hypothesis testing
problem. 2

The relevant quantities may be summarized in the following relationship:

H −→ Y −→ Ĥ
PH(i) fY |H(y|i)

From PH and fY |H , via Bayes rule, we obtain

PH|Y (i|y) =
PH(i)fY |H(y|i)

fY (y)

where fY (y) =
∑

i PH(i)fY |H(y|i) . PH|Y (i|y) is the posterior (also called a posteriori
probability of H given Y ). Once we have observed that Y = y , the probability that
H = i becomes PH|Y (i|y) .

If we choose Ĥ = i , then PH|Y (i|y) is the probability that we made the correct decision.
Since our goal is to maximize the probability of being correct, the optimum decision rule
is

Ĥ(y) = arg max
i
PH|Y (i|y) (MAP decision rule). (2.1)

This is called maximum a posteriori (MAP) decision rule. In case of ties, i.e. if PH|Y (j|y)
equals PH|Y (k|y) equals maxi PH|Y (i|y) , then it does not matter if we decide for Ĥ = k

or for Ĥ = j . In either case the probability that we have decided correctly is the same.

Since the MAP rule maximizes the probability of being correct for each observation
y , it also maximizes the unconditional probability of being correct Pc . The former is
PH|Y (Ĥ(y)|y) . If we plug in the random variable Y instead of y , then we obtain a
random variable. (A real-valued function of a random variable is a random variable.)
The expected valued of this random variable is the (unconditional) probability of being
correct, i.e.,

Pc = E[PH|Y (Ĥ(Y )|Y )] =

∫

y

PH|Y (Ĥ(y)|y)fY (y)dy.
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There is an important special case, namely when H is uniformly distributed. In this case,
PH|Y (i|y) , as a function of i , is proportional to fY |H(y|i)/m . Therefore, the argument
that maximizes PH|Y (i|y) also maximizes fY |H(y|i) . Then the MAP decision rule is
equivalent to the maximum likelihood (ML) decision rule:

Ĥ(y) = arg max
i
fY |H(y|i) (ML decision rule). (2.2)

2.2.1 Binary Hypothesis Testing

The special case in which we have to make a binary decision, i.e., H ∈ H = {0, 1} , is
both instructive and of practical relevance. Since there are only two alternatives to be
tested, the MAP test may now be written as

fY |H(y|1)PH(1)

fY (y)

Ĥ = 1
≥
<

Ĥ = 0

fY |H(y|0)PH(0)

fY (y)

An equivalent rule is

Λ(y) =
fY |H(y|1)

fY |H(y|0)

Ĥ = 1
≥
<

Ĥ = 0

PH(0)

PH(1)
= η (binary MAP rule). (2.3)

The left side of the above test is called the likelihood ratio denoted by Λ(y) whereas the
right side is the threshold η . Notice that if PH(0) increases, so does the threshold. In
turn the region {y : Ĥ(y) = 0} becomes bigger. This is intuitive.

When PH(0) = PH(1) = 1/2 the threshold becomes unity and the MAP test becomes a
ML test that may be written as

fY |H(y|1)

Ĥ = 1
≥
<

Ĥ = 0

fY |H(y|0) (binary ML rule).

The decoding region Ri is the set of y for which the decision is Ĥ = i , i ∈ {0, 1} .

To compute the probability of error it is often convenient to compute the error probability
for each hypothesis and then take the average. When H = 0, we make an incorrect
decision if Y ∈ R1 or, equivalently, if Λ(y) ≥ η . Hence, denoting by Pe(i) the probability
of making an error when H = i ,

Pe(0) = Pr{Y ∈ R1|H = 0} =

∫

R1

fY |H(y|0)dy (2.4)

= Pr{Λ(Y ) ≥ η|H = 0}. (2.5)
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Whether it is easier to work with the right side of (2.4) or of (2.5) depends on whether it
is easier to work with the conditional density of Y or of Λ(Y ) . We will see examples of
both cases.

Similar expressions hold for the probability of error conditioned on H = 1, denoted by
Pc(1) . The unconditional error probability is then

Pe = Pc(1)pH(1) + Pe(0)pH(0).

From (2.3) we see that, for the purpose of performing a MAP test, having Λ(Y ) is as
good as having the observable Y . Any random variable obtained from Y that has this
property is called a sufficient statistic. More on this later.

2.3 The Q function

The Q function is defined as:

Q(x)
△
=

1√
2π

∫ ∞

x

e−
ξ2

2 dξ.

Hence, if Z ∼ N (0, 1) (meaning that Z is a Normally distributed zero-mean random
variable of unit variance) then Pr{Z ≥ x} = Q(x) .

If Z ∼ N (m,σ2) , then the probability Pr{Z ≥ x} can be written using the Q function
by noticing that {Z ≥ x} is equivalent to {Z−m

σ
≥ x−m

σ
} . But Z−m

σ
∼ N (0, 1) . Hence

Pr{Z ≥ x} = Q(x−m
σ

) . Make sure you are familiar with these steps. We will use them
frequently.

We now describe some of the key properties of Q(x) .

(a) If Z ∼ N (0, 1) , FZ(z) = Pr{Z ≤ z} = 1 − Q(z) . (Draw a picture that expresses
this relationship in terms of areas under the probability density function of Z .)

(b) Q(0) = 1/2 , Q(−∞) = 1 , Q(∞) = 0 .

(c) Q(−x) +Q(x) = 1 . (Again, draw a picture.)

(d) 1√
2πα

e−
α2

2 (1 − 1
α2 ) < Q(α) < 1√

2πα
e−

α2

2 , α > 0 .

(e) An alternative expression with fixed integration limits is Q(x) = 1
π

∫ π
2

0
e−

x2

2 sin2 θ dθ . It
holds for x ≥ 0 .

(f) Q(α) ≤ 1
2
e−

α2

2 , α ≥ 0.
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Proofs: The proofs or (a), (b), and (c) are immediate (a picture suffices). The proof of
part (d) is omitted. To prove (e), let X ∼ N (0, 1) and Y ∼ N (0, 1) be independent.

Hence Pr{X ≥ 0, Y ≥ ξ} = Q(0)Q(ξ) = Q(ξ)
2

.

Using Polar coordinates

Q(ξ)

2
=

∫ π
2

0

∫ ∞

ξ

sin θ

e−
r2

2

2π
rdrdθ

=
1

2π

∫ π
2

0

∫ ∞

ξ2

2 sin2 θ

e−tdtdθ

=
1

2π

∫ π
2

0

e−
ξ2

2 sin2 θ dθ.

To prove (f) we use (e) and the fact that e−
ξ2

2 sin2 θ ≤ e−
ξ2

2 for θ ∈ [0, π
2
] . Hence

Q(ξ) ≤ 1

π

∫ π
2

0

e−
ξ2

2 dθ =
1

2
e−

ξ2

2 .

2.4 Binary Hypothesis, Scalar Gaussian Channel

We consider the following setup

-
H ∈ {0, 1}

TX

S Y
-

�

��

6

Z ∼ N (0, σ2)

- RX -
Ĥ

We assume that the transmitter maps H = 0 into a ∈ R and H = 1 into b ∈ R . The
output statistic for the various hypotheses is as follows:

H = 0 : Y ∼ N (a, σ2)

H = 1 : Y ∼ N (b, σ2).

An equivalent way to say this is

fY |H(y | 0) =
1√

2πσ2
e−

(y−a)2

2σ2
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fY |H(y | 1) =
1√

2πσ2
e−

(y−b)2

2σ2 .

We compute the likelihood ratio

Λ(y) =
fY |H(y | 1)

fY |H(y | 0)
= e−

(y−b)2−(y−a)2

2σ2

= e
b−a

σ2 (y−a+b
2

)

The threshold is η = P0

P1
. Now we have all the ingredients for the MAP rule.

Comparing Λ(y) to η is the same as comparing log Λ(y) to log η . The function log Λ(y)
is called log likelihood ratio. Hence the MAP decision rule is

b− a

σ2

(

y − a+ b

2

)

Ĥ = 1
≥
<

Ĥ = 0

ln η.

If b > a , then we can divide both sides by b−a
σ2 without changing the outcome of the

above comparison. In this case we obtain

ĤMAP(y) =

{

1, y > θ

0, otherwise,

where θ = σ2

b−a ln η+ a+b
2
. Notice that if PH(0) = PH(1) , then ln η = 0 and the threshold

θ becomes the midpoint a+b
2

.

We now determine the probability of error. Recall that

Pe(0) = Pr{Y > θ | H = 0}

=

∫

R1

fY |H(y | 0)dy

This is the probability that a Gaussian random variable with mean a and variance σ2

exceeds the threshold θ . From our review on the Q function we know immediately that

Pe(0) = Q

(

θ − a

σ

)

.

Similarly,

Pc(1) = Q

(

b− θ

σ

)

.

Finally,

Pe = PH(0)Q

(

θ − a

σ

)

+ PH(1)Q

(

b− θ

σ

)

.
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a b
a+b
2

Figure 2.3: The probability of error when H = 0 is the black area. It is the
probability that the noise makes y exceed the threshold when H = 0 . The
value of the threshold, half way between a and b , is determined assuming

PH(0) = PH(1) .

The most common case is when PH(0) = PH(1) = 1/2 . Then θ−a
σ

= b−θ
σ

= b−a
2σ

and

Pe = Q

(

b− a

2σ

)

.

Notice that b−a
2

is the distance between a (or b ) and the threshold. The following picture,
which holds for PH(0) = PH(1) , leads immediately to Pe . Make sure that you understand
it. It will be used very frequently.

2.5 Binary Hypothesis, Vector Gaussian Channel

The setup is the same as for the scalar case except that the transmitter output s , the
noise z , and the observation y are now n -tuples over R .

We now assume that the hypothesis i is mapped into the transmitter output X(i) defined
by

X(i) =

{

a ∈ R
n, i = 0

b ∈ R
n, i = 1.

We also assume that Z ∼ N (0, σ2In) .

As we did earlier, we start writing down the output statistic for each hypothesis

H = 0 : Y = a + Z ∼ N (a, σ2In)

H = 1 : Y = b + Z ∼ N (b, σ2In).
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Recall that

fZ(z) =
n
∏

i=1

1√
2πσ2

e−
z2
i

2σ2

=
1

(2πσ2)n/2
e−

P

z2
i

2σ2

=
1

(2πσ2)n/2
e−

‖z‖2

2σ2 .

Similarly,

fY |H(y | 0) =
1

(2πσ2)n/2
e−

‖y−a‖2

2σ2

fY |H(y | 1) =
1

(2πσ2)n/2
e−

‖y−b‖2

2σ2 .

Hence

Λ(y) =
fY |H(y | 1)

fY |H(y | 0)
= e

‖y−a‖2−‖y−b‖2

2σ2 ,

LLR(y) =
‖ y − a ‖2 − ‖ y − b ‖2

2σ2

=
‖ a ‖2 − ‖ b ‖2

2σ2
+

1

σ2
〈y, b − a〉,

and the MAP rule is

〈y, b − a〉
Ĥ = 1
≥
<

Ĥ = 0

φ,

where φ = σ2 ln η + ‖b‖2−‖a‖2

2
is a threshold and η = PH(0)

PH(1)
. This says that R0 and R1

are separated by the hyperplane

{y ∈ R
n : 〈y,u〉 = φ}

where u = b − a .

When PH(0) = PH(1) = 1/2 , the separating hyperplane separates the points that are
closer to a from those that are closer to b . We see this by solving for y in

LLR(y) = ln η

when ln η = 0. The y that satisfy this relationship are the one for which

‖ y − a ‖2 − ‖ y − b ‖2= 0.
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These are the y that are at the same distance from a and from b . Hence the ML
decision rule for the AWGN channel decides for the transmitted vector that is closer to
the observed vector.

We also see that the separating hyperplane moves towards b when φ increases, which
is the case when PH(0)

PH(1)
increases. This makes sense: if the prior probability becomes

more in favor of H = 0 then the decoding region R0 becomes larger. Moreover, if PH(0)
PH(1)

exceeds 1 , then ln η is positive and φ increases with σ2 . This also makes sense: as the
observation becomes noisier, we pay more attention to the prior (which favors H = 0).

2.6 Multi-Hypothesis Testing

In Section 2.2 we have defined the hypothesis testing problem and derived the maximum
a posteriori (MAP) and maximum likelihood (ML) decision rules. This was done for the
general case of m hypotheses, that is when H = {0, 1, . . . , (m− 1) . We then turned our
attention to binary hypotheses, i.e. H = {0, 1} , and deepened our understanding paying
particular attention to the special case in which the observation Y is a Gaussian random
variable (or random vector Y ) whose mean depends on H . Now we go back to the m
hypothesis testing problem.

Recall that the MAP decision rule, which minimizes the probability of making an error,
is

ĤMAP (y) = arg max
i
PH|Y (i|y)

= arg max
i

fY |H(y|i)PH(i)

fY (y)

= arg max
i
fY |H(y|i)PH(i),

where fY |H(·|i) is the probability density function of the observable Y when the hypoth-
esis is i and PH(i) is the probability of the i th hypothesis. This rule is well defined up to
ties. If there is more than one i that achieves the maximum in the right side of one (and
thus all) of the above expressions, then we may decide for any such i without affecting
the probability of error. If we want the decision rule to be unambiguous, we can agree
that in case of ties we pick the largest i that achieves the maximum.

When all hypotheses have the same probability, then the MAP rule specializes to the ML
rule, i.e.,

ĤML(y) = arg max
i
fY |H(y|i).

In all cases considered here, fY |H will be known. If the transmitter maps the hypothesis
i into the channel input si , then fY |H(y|i) = fY |X(y|si) , where fY |X(·|x) , also denoted
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Ri

R0 R1

Rm−1

by fY |x , is the probability density function of the channel output when the channel input
is x .

Note that the decision (or decoding) function Ĥ assigns an i ∈ H to each y ∈ R
n . It

can be equivalently described by the decision (or decoding) regions Ri , i ∈ H , where
Ri consists of those y for which Ĥ(y) = i . It is convenient to think of R

n as being
partitioned by decoding regions as depicted in the following figure.

We use the decoding regions to express the error probability Pe or, equivalently, the
probability of deciding correctly Pc .

Pe(i) = 1 − Pc(i)

= 1 −
∫

Ri

fY |H(y|i)dy.

Now assume the AWGN channel. When H = i , i ∈ H , let S = si . Assume PH(i) = 1
m

(this is a common assumption in communications). The ML decision rule is

ĤML(y) = arg max
i
fY |H(y|i)

= arg max
i

1

(2πσ2)n/2
exp{−‖ y − si ‖2

2σ2
}

= arg min
i

‖ y − si ‖2 .

Hence a ML decision rule for the AWGN channel is a minimum-distance decision rule as
shown in Figure 2.4.

Up to ties, Ri corresponds to the Voronoi region of si . The Voronoi region of si is the
set of points in R

n that are at least as close to si as to any other sj .

Example 5. (PAM) Figure 2.5 shows the signal points and the decoding regions for 6-ary
Pulse Amplitude Modulation (why the name makes sense will become clear in the next
chapter).

The error probability for each hypothesis is

Pe(0) = Pe(5) = Pr{Z < −d
2
} = Q(

d

2σ
).
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R1R0

s2

R2

s0 s1

Figure 2.4: Example of Voronoi regions.

- Rs s s s s s
s0 s1 s2 s3 s4 s5

R0 R1 R2 R3 R4 R5

Figure 2.5: PAM signal constellation.

For i ∈ {1, 2, 3, 4} ,

Pe(i) = Pr{{Z ≥ d

2
} ∪ {Z < −d

2
}}

= 2Pr{Z ≥ d

2
} = 2Q(

d

2σ
)

Where in the last equality we used the fact that the events under consideration are disjoint.
Finally,

Pe =
2

6
Q(

d

2σ
) +

4

6
2Q(

d

2σ
) =

5

3
Q(

d

2σ
).

Example 6. (4-ary QAM) Figure 2.6 shows the signal set for 4-ary Quadrature Amplitude
Modulation (QAM).

We compute the probability of error as follows. First we observe that, due to symmetry,

Pe = Pe(0).
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-

6

s s

s s

s1 s0

s2 s3

6

?

d

Figure 2.6: QAM signal constellation.

Furthermore,

Pc(0) = Pr

{

{Z1 ≥ −d
2
} ∩ {Z2 ≥ −d

2
}
}

=

[

Pr{Zi ≥ −d
2
}
]2

= Q2

(

− d

2σ

)

=

[

1 −Q

(

d

2σ

)]2

.

Hence,

Pe = Pe(0) = 1 − Pc(0) = 2Q

(

d

2σ

)

−Q2

(

d

2σ

)

.

When decoding regions are rectangular as in this example, one can easily express the error
probability by means of the Q function . 2

2.7 Union of Events Bound

Here is a simple and extremely useful bound. Recall that for general events A,B

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

≤ P (A) + P (B) .

More generally, using induction, we obtain the the Union of Events Bound

P

(

M
⋃

i=1

Ai

)

≤
M
∑

i=1

P (Ai) (UEB).
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We now apply the union of events bound to approximate the probability of error in multi-
hypothesis testing. Recall that

Pe(i) = Pr{Y 6∈ Ri|H = i} =

∫

Rc
i

fY |H(y|i)dy,

where Rc
i denotes the complement of Ri . If we are able to evaluate the above integral

for every i , then we are able to determine the probability of error exactly. The bound
that we derive is useful if we are unable to evaluate the above integral.

For i 6= j define
Bi,j = {y : PH(j)fY |H(y|j) ≥ PH(i)fY |H(y|i)}.

Bi,j is the set of y for which the a posteriori probability when H = j is at least as high
as when H = i . Moreover,

Rc
i ⊆

⋃

j:j 6=i
Bi,j,

with equality if ties are always resolved against i . In fact, the right side contains all the
ties (by definition) whereas the left side may or may not contain them.

Now we use the union of events bound:

Pe(i) = Pr {Y ∈ Rc
i |H = i}

≤ Pr

{

Y ∈
⋃

j:j 6=i
Bi,j|H = i

}

≤
∑

j:j 6=i
Pr {Y ∈ Bi,j|H = i} (2.6)

=
∑

j:j 6=i

∫

Bi,j

fY |H(y|i)dy.

What we have gained is that it is typically easier to integrate over Bi,j than over Rc
j .

For instance, for the AWGN channel and ML decision rule

∫

Bi,j

fY |H(y|i)dy = Q

(‖ sj − si ‖
2σ

)

.

Moreover, in the next section we derive an easy-to-compute tight upperbound on
∫

Bi,j

fY |H(y|i)dy.

Notice that the above integral is the probability of error under H = i when there are
only two hypotheses and the other hypothesis is H = j .

Example 7. (m -PSK) The figure below shows a signal set for m -ary PSK (phase-shift
keying) when m = 8 .
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s1

s7

s6

s3

s5

s2

s0s4

√Es

Formally, the signal transmitted when H = i , i ∈ H = {0, 1, . . . ,m− 1} , is

si =
√

Es
(

cos 2πi/m
sin 2πi/m

)

.

The hypothesis testing problem is specified by

H = i : Y ∼ N (si, σ
2I2)

and the prior PH(i) is assumed to be uniformly distributed.

Since we have a uniform prior, the MAP and the ML decision rule are identical. Due
to the circular symmetry of the additive noise, the ML decoder is a minimum-distance
decoder. The decoding regions (up to ties) are shown in the picture below.

R2

R6

R5

R7

R0

R1
R3

s4

s1

s0

s3

s5
s6

s2

R4

s7

Now we proceed to compute the error probability. By symmetry, Pe(i) is independent of
i . Hence Pe = Pe(i) . To determine Pe(i) , it is convenient to put the coordinate system
at si as shown in the figure below.

Pe(i) = 2Pr{Z ∈ shaded area}

= 2

∫

z∈shaded area

1

2πσ2
exp{−‖ z ‖2

2σ2
}dz.
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New origin Old origin

√Es

ψ θ

r

b(θ) =
√
Es sinψ

sin(θ+ψ)

z

ψ

s4 0

ψ = π
m

Passing to polar coordinates with

z1 = r cos θ

z2 = r sin θ

we obtain

Pe(i) = 2

∫ π−ψ

0

∫ ∞

b(θ)

1

2πσ2
exp

{

− r2

2σ2

}

rdrdθ

=

∫ π−ψ

0

1

π
exp

{

−b
2(θ)

2σ2

}

dθ

=
1

π

∫ π−ψ

0

exp

{

− sin2 ψ

sin2(θ + ψ)

Es
2σ2

}

dθ. (Exact analysis of PSK).

This is as far as we can go with the exact analysis.

Now we use the union of events bound to determine an upperbound to the error proba-
bility. With reference to the figure below we have:

Pe(i) = Pr{Y ∈ Bi,i−1 ∪ Bi,i+1|H = i}
≤ Pr{Y ∈ Bi,i−1|H = i} + Pr{Y ∈ Bi,i+1|H = i}
= 2Pr{Y ∈ Bi,i−1|H = i}

= 2Q

(‖ si − si−1 ‖
2σ

)

= 2Q

(√Es
σ

sinψ

)

.

Notice that we have been using a version of the union of events bound adapted to the
problem: we are getting a tighter bound by using the fact that Rc

i = Bi,i−1∪Bi,i+1 rather
than Rc

i ⊂ ∪j 6=iBi,j .
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s5

B4,5

B4,3

How good is the upperbound? Notice that

Pe = Pr{Bi,i−1|H = i} + Pr{Bi,i+1|H = i} − Pr{Bi,i−1 ∩ Bi,i+1|H = i}

and we obtained an upper bound by lower-bounding the last term with 0 . We now obtain
a lower bound to Pe by upperbounding the same term:

Pr{Y ∈ (Bi,i−1 ∩ Bi,i+1)|H = i} ≤ Pe(i)

m− 1
=

Pe
m− 1

.

Hence,

Pe = Pr{Bi,i−1|H = i} + Pr{Bi,i+1|H = i} − Pr{B4,3 ∩ Bi,i+1|H = i}

≥ 2Q

(
√

Es
σ2

sinψ

)

− Pe
m− 1

.

Solving for Pe we obtain the desired lower bound

Pe ≥ 2Q

(
√

Es
σ2

sinψ

)

m− 1

m
.

The ratio between the upper and the lower bound is the constant m
m−1

. For m large,
the bounds become very tight. One can determine even better lower bounds for which
this ratio goes to 1 as Es/σ2 → ∞ . One such bound is obtained by upperbounding

Pr{Bi,i−1 ∩Bi,i+1|H = i} with the probability Q
(√

Es

σ

)

that Y1 is positive given H = i .
2

2.8 Union Bhattacharyya Bound

Let us summarize. From the union of events bound applied to

Rc
i ⊆

⋃

j:j 6=i
Bi,j
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we have obtained the upper bound

Pe(i) = Pr{Y ∈ Rc
i |H = i}

≤
∑

j:j 6=i
Pr{Y ∈ Bi,j|H = i}

and we have used this bound for the AWGN channel. What we have gained with the
bound is that instead of having to compute

Pr{Y ∈ Rc
i |H = i} =

∫

Rc
i

fY |H(y|i)dy,

which requires integrating over a possibly complicated region Rc
i , we only have to compute

Pr{Y ∈ Bi,j|H = i} =

∫

Bi,j

fY |H(y|i)dy.

The latter integral is simply Q( a
σ
) , where a is the distance between si and the hyperplane

bounding Bi,j . For a ML decision rule, a =
‖si−sj‖

2
.

What if the channel is not AWGN? Is there a relatively simple expression for Pr{Y ∈
Bi,j|H = i} that applies for general channels? Such an expression does exist. It is the
Bhattacharyya bound that we now derive.3

Recall that
Bi,j = {y ∈ R

n : PH(i)fY |H(y|i) ≤ PH(j)fY |H(y|j)}.
Hence

1Bi,j
(y) ≤

√

PH(j)fY |H(y|j)
PH(i)fY |H(y|i) .

With this we obtain the Bhattacharyya bound as follows:

Pr{Y ∈ Bi,j|H = i} =

∫

y∈Bi,j

fY |H(y|i)dy

=

∫

y∈Rn

fY |H(y|i)1Bi,j
(y)dy

≤
∫

y∈Rn

fY |H(y|i)
√

PH(j)fY |H(y|j)
PH(i)fY |H(y|i) dy

=

√

PH(j)

PH(i)

∫

y∈Rn

√

fY |H(y|i)fY |H(y|j) dy.

What makes the last integral appealing is that we integrate over the entire R
n . For

discrete memoryless channels the bound further simplifies (see homework).

3There are two versions of the Bhattacharyya bound. Here we derive the one that has the simpler
derivation. The other version, which is tighter by a factor 2 , is left as an exercise.
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As the name indicates, the Union Bhattacharyya bound is the union of events bound

Pr{e} ≤
∑

i

∑

j:j 6=i
Pr{Y ∈ Bi,j|H = i}PH(i),

with Pr{Y ∈ Bi,j|H = i} upper bounded by the Bhattacharyya bound.

Example 8. (Tightness of the Bhattacharyya Bound) Consider the following scenario
consisting of the following transmitter

H = 0 : S = s0 = (0, 0, . . . , 0)T

H = 1 : S = s1 = (1, 1, . . . , 1)T

and where the channel is the binary erasure channel described in the figure:

1 - 11 − p

∆

������������:

XXXXXXXXXXXXz

0 0-1 − p
X Y

Figure 2.7: Binary erasure channel.

The Bhattacharyya bound is :

Pr{Y ∈ B0,1 | H = 0} ≤
∑

y∈{0,1,∆}n

√

PY |H(y | 1)PY |H(y | 0)

=
∑

y∈{0,1,∆}n

√

PY |X(y | s1)PY |X(Y | s0)

=
√

PY |X((∆, . . . ,∆)T | s0)PY |X((∆, . . . ,∆)T | s1)

= pn.

The same bound applies for H = 1 . Hence Pe ≤ 1
2
pn + 1

2
pn = pn .

If we use the tighter version of the union Bhattacharyya bound, which as mentioned earlier
is tighter by a factor of 2 , then we obtain

Pe
(UBB)

≤ 1

2
pn.

For the Binary Erasure Channel and the two codewords s0 and s1 we can actually
compute the probability of error exactly:

Pe =
1

2
Pr{Y = (∆,∆, . . . ,∆)T} =

1

2
pn.

For this channel the Bhattacharyya bound is tight!
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2.9 Problems

Problem 1. (Weather Frog.) Let us assume that a “weather frog” bases his forecast for
tomorrow’s weather entirely on today’s air pressure. Determining a weather forecast is
an hypothesis testing problem. For simplicity, let us assume that the weather frog only
needs to tell us if the forecast for tomorrow’s weather is “sunshine” or “rain”. Hence
we are dealing with a binary hypothesis testing problem. Let H = 0 mean “sunshine”
and H = 1 mean “rain”. We will assume that both values of H are equally likely, i.e.
pH(0) = pH(1) = 1/2 .

Measurements over several years have led the weather frog to conclude that on a day that
precedes sunshine the pressure may be modeled as a random variable y with the following
probability density function:

fY |H(y|0) =

{

A− A
2
y, 0 ≤ y ≤ 1

0, otherwise,
(2.7)

Similarly, the pressure on a day that precedes a rainy day is distributed according to

fY |H(y|1) =

{

B + B
3
y, 0 ≤ y ≤ 1

0, otherwise.
(2.8)

The weather frog’s goal in life is to guess the value of H after measuring Y .

(i) Determine A and B .

(ii) Find the probability pH|Y (0|y) for all values of y . This probability is often called the
a posteriori probability of hypothesis H = 0 given that Y = y . Also find the probability
pH|Y (1|y) for all values of y . Hint: Use Bayes’ rule.

(iii) Plot pH|Y (0|y) and pH|Y (1|y) as a function of y . It is true that the decision rule
may be written as

Ĥ(y) =

{

0, if y ≤ θ
1, otherwise,

(2.9)

for some threshold θ ? If yes specify θ .

(iv) Determine the probability that the decision rule in (iii) decides Ĥ = 1 when, in
reality, H = 0 . This probability is denoted Pr(Ĥ(y) = 1|H = 0) .

(v) Determine the probability of error for the decision rule that you have derived in (iii).

(vi) Among decision rules that compare the pressure y to a threshold like in Eqn. (2.9),
is there a decision rule that results in a smaller probability of error than the rule derived
in (iii)? Hint: Express the probability of error as in (v) as a function of θ , and minimize
over all θ .
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Problem 2. (Hypothesis testing in Laplacian noise.) Consider the following hypothesis
testing problem between two equally likely hypotheses. Under hypothesis H = 0 , the
observable Y is equal to a+Z where Z is a random variable with Laplacian distribution

fZ(z) =
1

2
e−|z|. (2.10)

Under hypothesis H = 1 , the observable is given by −a+ Z .

(i) Find and draw the density fY |H(y|0) of the observable under hypothesis H = 0 , and
the density fY |H(y|1) of the observable under hypothesis H = 1 .

(ii) Find the optimal decision rule to minimize the probability of error. Write out the
expression for the likelihood ratio.

(iii) Compute the probability of error of the optimal decision rule.

Problem 3. (Poisson parameter estimation.) In this example there are two hypotheses,
H = 0 and H = 1 , which occur with probabilities pH(0) = p0 and pH(1) = 1 − p0 ,
respectively. The observable is y ∈ N0 , i.e. y is a nonnegative integer. Under hypothesis
H = 0 , y is distributed according to a Poisson law with parameter λ0 , i.e.

pY |H(y|0) =
λy0
y!
e−λ0 . (2.11)

Under hypothesis H = 1 ,

pY |H(y|1) =
λy1
y!
e−λ1 . (2.12)

(i) Make up a story around this problem. Clearly identify the meaning of λ0 and λ1 , and
of the observation y .

(ii) Derive the MAP decision rule by indicating likelihood and log-likelihood ratios.
Hint: The direction of an inequality changes if both sides are multiplied by a negative
number.

(iii) Derive the formula for the probability of error of the MAP decision rule.

(iv) For p0 = 1/3 , λ0 = 2 and λ1 = 10 , compute the probability of error of the MAP
decision rule. You may want to use a computer program to do this.

(v) Repeat (iv) with λ1 = 20 and comment.

Problem 4. (iid versus first-order Markov model.) Consider testing two equally likely
hypotheses H = 0 and H = 1 . The observable

Y = (Y1, . . . , Yk) (2.13)
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is a k -dimensional binary vector. Under H = 0 the components of the vector Y are
independent uniform random variables (also called Bernoulli (1/2) random variables).
Under H = 1 , the component Y1 is also uniform, but the components Yi , 2 ≤ i ≤ k ,
are distributed as follows:

Pr(Yi = yi|Yi−1 = yi−1, . . . , Y1 = y1) =

{

3/4, if yi = yi−1

1/4, otherwise.
(2.14)

(i) Find the decision rule that minimizes the probability of error. Hint: Write down a
short sample sequence (y1, . . . , yk) and determine its probability under each hypothesis.
Then generalize.

(ii) Give a simple sufficient statistic for this decision.

(iii) Suppose that the observed sequence alternates between 0 and 1 except for one string
of ones of length s , i.e. the observed sequence y looks something like

y = 0101010111111 . . . 111111010101 . . . . (2.15)

What is the least s such that we decide for hypothesis H = 1? Evaluate your formula
for k = 20 .

Problem 5. (Real-valued Gaussian Random Variables.) For the purpose of this prob-
lem, two zero-mean real-valued Gaussian random variables X and Y are called jointly
Gaussian if and only if their joint density is

fXY (x, y) =
1

2π
√

det Σ
exp

(

−1

2

(

x, y
)

Σ−1

(

x
y

))

, (2.16)

where (for zero-mean random vectors) the so-called covariance matrix Σ is

Σ = E

[(

X
Y

)

(X, Y )

]

=

(

σ2
X σXY

σXY σ2
Y

)

. (2.17)

(i) Show that if X and Y are jointly Gaussian random variables, then X is a Gaussian
random variable, and so is Y .

(ii) How does your answer change if you use the definition of jointly Gaussian random
variables given these notes?

(iii) Show that if X and Y are independent Gaussian random variables, then X and Y
are jointly Gaussian random variables.

(iv) However, if X and Y are Gaussian random variables but not independent, then
X and Y are not necessarily jointly Gaussian. Give an example where X and Y are
Gaussian random variables, yet they are not jointly Gaussian.

(v) Let X and Y be independent Gaussian random variables with zero mean and variance
σ2
X and σ2

Y , respectively. Find the probability density function of Z = X + Y .
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Problem 6. (Correlation and independence.) Let Z be a random variable with p.d.f.:

fZ(z) =

{

1/2, −1 ≤ z ≤ 1
0, otherwise.

(2.18)

Also, let X = Z and Y = Z2 .

(i) Show that X and Y are uncorrelated.

(ii) Are X and Y independent?

(iii) Now let X and Y be jointly Gaussian, zero mean, uncorrelated with variances σ2
X

and σ2
Y respectively. Are X and Y independent? Justify your answer.

Problem 7. (Transformation of Random Vectors.) Let R and Φ be independent random
variables. R is distributed uniformly over the unit interval, Φ is distributed uniformly
over the interval [0, 2π) .4

(i) Interpret R and Φ as the polar coordinates of a point in the plane. It is clear that
the point lies inside (or on) the unit circle. Is the distribution of the point uniform over
the unit disk? Take a guess!

(ii) Define the random variables

X = R cos Φ (2.19)

Y = R sin Φ. (2.20)

Find the joint distribution of the random variables X and Y using the Jacobian deter-
minant.

Do you recognize a relationship between this method and the method derived in class to
determine the probability density after a linear non-singular transformation?

(iii) Does the result of part (ii) support or contradict your guess from part (i)? Explain.

Problem 8. (Theorem Of Irrelevance and Sufficient Statistics.) Have you ever tried to
drink from a fire hydrant? There are situations in which the observable Y contains too
much data. You would like to have a many-to-one function T so that T (Y ) contains
enough information to make a MAP decision but not too much to be impractical to work
with. The Theorem of irrelevance gives a test to check if you have such a function.

Consider two hypotheses with probabilities pH(0) = p0 and pH(1) = 1− p0 . The observ-
able is Y = (Y1, . . . , Yk) . Let fY |H(y|0) and fY |H(y|1) be given.

4This notation means: 0 is included, but 2π is excluded. It is the current standard notation in the
anglo-saxon world. In the French world, the current standard for the same thing is [0, 2π[ .
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(i) ( Theorem of irrelevance): Suppose it is possible to write

fY |H(y|0) = g0(T (y))h(y) (2.21)

fY |H(y|1) = g1(T (y))h(y), (2.22)

where T (·) : R
k → R

d is a function from the observation space R
k to some space of

choice R
d , g0(·), g1(·) : R

d → R
+ and h(·) : R

k → R
+ .

Prove that if you have T (y) you don’t need y to make a MAP decision. For this reason
T (y) is called a sufficient statistic for the hypothesis testing problem.

(ii) Sometimes we can partition the observable Y ∈ R
k into two vectors Y ′ = (Y1, . . . , Yr)

and Y ′′ = (Yr+1, . . . , Yk) . Show that the irrelevance theorem implies the following state-
ment: If fY ′′|H,Y ′(y′′|i, y′) does not depend on i , then Y ′ is a sufficient statistic, i.e. Y ′′

is irrelevant to the decision problem.

(iii) Use (ii) to answer the following communications problem (see the picture below):
Under H = 0 , the source emits S = 1 ; under H = 1 , the source emits S = −1 . The
receiver has access to two noisy versions of the source output, namely

Y (1) = S + Z1 (2.23)

Y (2) = S + Z1 + Z2, (2.24)

where Z1 and Z2 are zero-mean Gaussian random variables of variance σ2 . Is Y (2)

relevant to the hypothesis testing problem? Prove your answer.

Source

Receiver

S

Z 1 Z2

Y
(1)

Y
(2)

Problem 9. Consider a binary hypothesis testing problem specified by:

H = 0 :

{

Y1 = Z1

Y2 = Z1Z2

H = 1 :

{

Y1 = −Z1

Y2 = −Z1Z2

where Z1 , Z2 and H are independent random variables.

(i) Is Y1 a sufficient statistic? Recall that Y1 is a sufficient statistic if a MAP decoder that
observes (Y1, Y2) makes the same decision (up to ties) as a MAP decoder that observes
Y1 alone.

(Hint: If Y = aZ , where a is a scalar then fY (y) = 1
|a|fZ(y

a
) ).
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Problem 10. (Comparison of 16-PAM and 16-QAM.) The following two signal constel-
lations are used to communicate across an additive white Gaussian noise channel. Le the
noise variance be σ2 .

b

a

Each point represents a signal si for some i . Assume each signal is used with the same
probabiliy.

(i) For each signal constellation, compute the average probability of error, Pe , as a func-
tion of the parameters a and b , respectively.

(ii) For each signal constellation, compute the average energy per symbol, Es , as a func-
tion of the parameters a and b , respectively:

Es =
16
∑

i=1

pH(i) ‖ si ‖2 (2.25)

(iii) Plot Pe versus Es for both signal constellations and comment.

Problem 11. Let X ∼ N (0, σ2I2) . For each of the three figures below, express the
probability that X lies in the shaded region. You may use the Q -function when appro-
priate.
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Problem 12. Let H ∈ {0, 1, 2, 3} and assume that when H = i you transmit the signal
si shown in the figure. Under H = i , the receiver observes Y = si + Z .

-

6

s s

s

s

s2 s0

s1

s3

x1

x2

(a) Draw the decoding regions assuming that Z ∼ N (0, σ2I2) and that PH(i) = 1/4 ,
i ∈ {0, 1, 2, 3} .

(b) Draw the decoding regions (qualitatively) assuming Z ∼ N (0, σ2I) and PH(0) =
PH(2) > PH(1) = PH(3) . Justify your answer.

(c) Assume again that PH(i) = 1/4 , i ∈ {0, 1, 2, 3} and that Z ∼ N (0, K) , where

K =

(

σ2 0
0 4σ2

)

. How do you decode now? Justify your answer.

Problem 13. (Antenna Array) The following problem relates to the design of multi-
antenna systems. The situation that we have in mind is one where one of two signals is
transmitted over a Gaussian channel and is received through two different antennas. We
shall assume that the noises at the two terminals are independent but not necessarily of
equal variance. You are asked to design a receiver for this situation, and to assess its
performance. This situation is made more precise as follows:

Consider the binary equiprobable hypothesis testing problem:

H = 0 : Y1 = A+ Z1, Y2 = A+ Z2

H = 1 : Y1 = −A+ Z1, Y2 = −A+ Z2,

where Z1, Z2 are independent Gaussian random variables with different variances σ2
1 6=

σ2
2 , that is, Z1 ∼ N (0, σ2

1) and Z2 ∼ N (0, σ2
2) . A > 0 is a constant.

(a) Show that the decision rule that minimizes the probability of error (based on the
observable Y1 and Y2 ) can be stated as

σ2
2y1 + σ2

1y2

0

≷
1

0. (2.26)
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(b) Draw the decision regions in the (Y1, Y2) plane for the special case where σ1 = 2σ2 .

(c) Evaluate the probability of error for the optimal detector as a function of σ2
1 , σ2

2 and
A .

Problem 14. You are taking a multiple choice exam. Question number 5 allows for two
possible answers. According to your first impression, answer 1 is correct with probability
1/4 and answer 2 is correct with probability 3/4 .

You would like to maximize your chance of giving the correct answer and you decide to
have a look at what your left and right neighbors have to say.

The left neighbor has answered ĤL = 1 . He is an excellent student who has a record of
being correct 90% of the time.

The right neighbor has answered ĤR = 2 . He is a weaker student who is correct 70% of
the time.

(a) You decide to use your first impression as a prior and to consider ĤL and ĤR as
observations. Describe the corresponding hypothesis testing problem.

(b) What is your answer Ĥ ? Justify it.

Problem 15. Consider a QAM receiver that outputs a special symbol called “erasure”
and denoted by δ whenever the observation falls in the shaded area shown in Figure (2.8).
Assume that s0 is transmitted and that Y = s0 +N is received where N ∼ N (0, σ2I2) .
Let P0i , i = 0, 1, 2, 3 be the probability that the receiver outputs Ĥ = i and letP0δ be
the probability that it outputs δ . Determine P00 , P01 , P02 , P03 and P0δ .

Problem 16. (Repeat Codes and Bhattacharyya Bound.) A repeat code is a code that
transmits each source output N times across the channel. It is clear that the probability
of error at the decoder decreases with increasing N .

Consider two equally likely hypotheses (or, as we could also say, source output values).
Under hypothesis H = 0 , the signal (X1, . . . , XN) = (1, . . . , 1) is put onto the channel;
under hypothesis H = 1 , the signal is (X1, . . . , XN) = (−1, . . . ,−1) . The transmission
channel adds zero-mean independent Gaussian noise of variance σ2 . At the receiver, we
observe

(Y1, . . . , YN) = (X1 + Z1, . . . , XN + ZN). (2.27)
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Figure 2.8: Modified QAM demodulator

Based on this observation, we can find the MAP estimator. In fact, it turns out that a
sufficient statistic is the sum of the received values, Y1 +Y2 + . . .+YN . The corresponding
probability of error was found to be

Pr(1){e} = Q

(√
N

σ

)

. (2.28)

However, in this case, the receiver has to be able to perform addition of real numbers,
and we also have to store them. This is not always possible. Therefore, suppose now that
the decoder has access only to the sign of Yi , 1 ≤ i ≤ N . That is, the observation is

W = (W1, . . . ,WN) = (sgn(Y1), . . . , sgn(YN)) = (sgn(X1 + Z1), . . . , sgn(XN + ZN)),(2.29)

where Zi ∼ N (0, σ2) .

(i) Determine the MAP decision rule based on the observation (W1, . . . ,WN) . Give a
simple sufficient statistic, and draw a diagram of the optimal receiver.

(ii) Find the expression for the probability of error Pr(2){e} . You may assume that N
is odd.

(iii) Your answer to (ii) contains a sum that cannot be solved in closed form. Therefore,
find the Bhattacharyya bound on Pr(2){e} .

(iv) For N = 1, 3, 5, 7 , find the numerical values of Pr(1){e} , Pr(2){e} , and the Bhat-
tacharyya bound on Pr(2){e} .
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Problem 17. (Tighter Union Bhattacharyya Bound: Binary Case) In this problem we
derive a tighter version of the Union Bhattacharyya Bound for binary hypotheses.
Let

H = 0 : Y ∼ fY |H(y | 0)

H = 1 : Y ∼ fY |H(y | 1).

The MAP decision rule is

Ĥ(y) = arg max
i
PH(i)fY |H(y | i),

and the resulting probability of error is

Pr{e} = PH(0)

∫

R1

fY |H(y | 0)dy + PH(1)

∫

R0

fY |H(y | 1)dy. (2.30)

(i) Argue that

Pr{e} =

∫

y

min
{

PH(0)fY |H(y | 0), PH(1)fY |H(y | 1)
}

dy.

(ii) Prove that for a, b ≥ 0, min(a, b) ≤
√
ab ≤ a+b

2
. Use this to prove the tighter version

of Bhattacharyya Bound, i.e,

Pr{e} ≤ 1

2

∫

y

√

fY |H(y | 0)fY |H(y | 1)dy.

(iii) Compare the above bound to the one derived in class when PH(0) = 1
2
. How do you

explain the improvement by a factor 1
2
?

Problem 18. (Tighter Union Bhattacharyya Bound: M -Ary Case)
In class we have derived the Union Bhattacharyya Bound. Is this a tight bound or can
we do better? To be specific, let us analyze the following M-ary MAP detector:

Ĥ(y) = smallest i such that (2.31)

PH(i)fY/H(y/i) = max
j

{PH(j)fY/H(y/j)} (2.32)

Let

Bij =

{

y : PH(j)fY |H(y|j) ≥ PH(i)fY |H(y | i), j < i

y : PH(j)fY |H(y | j) > PH(i)fY |H(y | i), j > i
(2.33)

(i) Verify that Bij = Bcji .
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Given H = i , the detector will make an error iff:

y ∈
⋃

j:j 6=i
Bij (2.34)

We calculate the probability of error as:

Pr{e} =
M−1
∑

i=0

Pr{e | H = i}PH(i) (2.35)

(ii) Show that:

Pr{e} ≤
M−1
∑

i=0

∑

j>i

[Pr{Bij | H = i}PH(i) + Pr{Bji | H = j}PH(j)] (2.36)

=
M−1
∑

i=0

∑

j>i

[

∫

Bij

fY |H(y | i)PH(i)dy +

∫

Bc
ij

fY |H(y | j)PH(j)dy

]

(2.37)

=
M−1
∑

i=0

∑

j>i

[∫

y

min
{

fY |H(y | i)PH(i), fY |H(y | j)PH(j)
}

dy

]

(2.38)

(Hint: Apply the Union of Events Bound to equation (2.35) and then group the terms
corresponding to Bij and Bji . For proving the last part, go back to the definition of Bij .)
(iii) Hence show that:

Pr{e} ≤
M−1
∑

i=0

∑

j>i

[ (

PH(i) + PH(j)

2

)∫

y

√

fY |H(y | i)fY |H(y | j)dy
]

(2.39)

(Hint: For a, b ≥ 0,min(a, b) ≤
√
ab ≤ a+b

2
.)

As an application of the above bound, consider the following binary hypothesis testing
problem:

H = 0 : Y ∼ N (−a, σ2) (2.40)

H = 1 : Y ∼ N (+a, σ2) (2.41)

where the two hypotheses are equiprobable. Use the above bound to show that:

Pr{e} = Pr{e | H = 0} (2.42)

≤ 1

2
exp

{

− a2

2σ2

}

(2.43)

But Pr{e} = Q
(

a
σ

)

. Hence we have re-derived the bound (see lecture 1):

Q(x) ≤ 1

2
exp

{

−x
2

2

}

. (2.44)



40 Chapter 2.

Problem 19. As an application of the bound derived in problem (10), consider the
following binary hypothesis testing problem

H = 0 : Y ∼ N (−a, σ2)

H = 1 : Y ∼ N (+a, σ2)

where the two hypotheses are equiprobable.

(i) Use the Tight Bhattacharyya Bound to derive a bound on Pr{e} .

(ii) We know that the probability of error for this binary hypothesis testing problem is

Q( a
σ
) ≤ 1

2
exp

{

− a2

2σ2

}

, where we have used the result Q(x) ≤ 1
2
exp

{

−x2

2

}

derived in

lecture 1. How do the two bounds compare? Are you surprised (and why)?

Problem 20. (Bhattacharyya Bound for DMCs.) Consider a Discrete Memoryless Chan-
nel (DMC). This is a channel model described by an input alphabet X , an output alphabet
Y and a transition probability5 P (y|x) . When we use this channel to transmit an n-tuple
x ∈ X n , the transition probability is

P (y|x) =
n
∏

i=1

P (yi|xi).

So far we have come across two DMCs, namely the BSC (Binary Symmetric Channel) and
the BEC (Binary Erasure Channel). The purpose of this problem is to realize that for
DMCs, the Bhattacharyya Bound takes on a simple form, in particular when the channel
input alphabet X contains only two letters.

(i) Consider a source that sends s0 when H = 0 and s1 when H = 1 . Justify the

5Here we are assuming that the output alphabet is discrete. Otherwise we need to deal with densities
instead of probabilities.
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following chain of inequalities.

Pr{e}
(a)

≤ 1

2

∑

y

√

P (y|s0)P (y|s1)

(b)

≤
∑

y

√

√

√

√

n
∏

i=1

P (yi|s0i)P (yi|s1i)

(c)
=

∑

y1,...,yn

n
∏

i=1

√

P (yi|s0i)P (yi|s1i)

(d)
=

[

∑

y1

√

P (y1|s01)P (y1|s11)

]

. . .

[

∑

yn

√

P (yn|s0n)P (yn|s1n)

]

(e)
=

n
∏

i=1

∑

y

√

P (y|s0i)P (y|s1i)

(f)
=

∏

a∈X ,b∈X ,a 6=b

(

∑

y

√

P (y|s0i)P (y|s1i)

)n(a,b)

.

where n(a, b) is the number of positions i in which s0i = a and s1i = b .

(ii) The Hamming distance dH(s0, s1) is defined as the number of positions in which
s0 and s1 differ. Show that for a binary input channel, i.e, when X = {a, b} , the
Bhattacharyya Bound becomes

Pr{e} ≤ zdH(s0,s1),

where
z =

∑

y

√

P (y|a)P (y|b).

Notice that z depends only on the channel whereas its exponent depends only on s0 and
s1 .

(iii) What is z for:

(a) The binary input Gaussian channel described by the densities

fY |X(y|0) = N (−
√
E, σ2)

fY |X(y|1) = N (
√
E, σ2).

(Hint: Use the result from Homework 4, Problem (iii)).

(b) The Binary Symmetric Channel (BSC) with the transition probabilities described by

pY |X(y|x) =

{

1 − δ, if y = x,
δ, otherwise.
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Verify your result with that of homework 4 problem 1.

(c) The Binary Erasure Channel (BEC) with the transition probabilities given by

pY |X(y|x) =







1 − δ, if y = x,
δ, if y = E
0, otherwise.

Verify your result with the one obtained in class.

(iv) Extra question for the curious ones: Assume that the BSC has been obtained from
the binary-input Gaussian channel via a one-bit quantizer applied at the channel output
like in homework 4 problem (i). Plot the z of the original and the quantized channel as
a function of the input power. By how much do we need to increase the input power of
the quantized channel to match the z of the unquantized channel?

Problem 21. (Signal Constellation.) The following signal constellation with six signals
is used in additive white Gaussian noise of variance σ2 :

-

6

s s s

s s s

-� b

6

?
a

Assume that the six signals are used with equal probabilities.

(i) Draw the boundaries of the decision regions into the above figure.

(ii) Compute the average probability of error, Pr{e} , for this signal constellation.

(iii) Compute the average energy per symbol for this signal constellation.

Problem 22. (Application of hypothesis testing to fading.) Consider the following com-
munication problem:

There are two equiprobable hypotheses. When H = 0 , we transmit s = −b , where b is
an arbitrary but fixed positive number. When H = 1 , we transmit s = b .

The channel is as shown in the figure below, where Z ∼ N (0, σ2) represents the noise,
A ∈ {0, 1} represents a random attenuation (fading) with PA(0) = 1

2
, and Y is the

channel output. The random variables H , A and Z are independent.
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(i) Find the decision rule that the receiver should implement to minimize the probability
of error. Sketch the decision regions.

(ii) Calculate the probability of error Pr{e} , based on the above decision rule.
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Appendix 2.A Facts About Matrices

We now review a few definitions and results that will be useful throughout. Hereafter H†

is the conjugate transpose of H also called the Hermitian adjoint of H .

Definition 9. A matrix U ∈ C
n×n is said to be unitary if U †U = I . If, in addition,

U ∈ R
n×n, U is said to be orthogonal.

The following theorem lists a number of handy facts about unitary matrices. Most of
them are straightforward. For a proof see [?, page 67].

Theorem 10. if U ∈ C
n×n , the following are equivalent:

(a) U is unitary;

(b) U is nonsingular and U † = U−1 ;

(c) UU † = I ;

(d) U † is unitary

(e) The columns of U form an orthonormal set;

(f) The rows of U form an orthonormal set; and

(g) For all x ∈ C
n the Euclidean length of y = Ux is the same as that of x ; that is,

y†y = x†x .

Theorem 11. (Schur) Any square matrix A can be written as

A = URU †

where U is unitary and R is an upper-triangular matrix whose diagonal entries are the
eigenvalues of A .

Proof. Let us use induction on the size n of the matrix. The theorem is clearly true for
n = 1. Let us now show that if it is true for n− 1 it follows that it is true for n . Given
A of size n , let v be an eigenvector of unit norm, and λ the corresponding eigenvalue.
Let V be a unitary matrix whose first column is v . Then, consider the matrix

V †AV.

Now, the first column of this matrix is given by

V †Av = λV †v = λe1
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where e1 is the unit vector along the first coordinate. Thus

V †AV =

(

λ ∗
0 B

)

where B is square and of dimension n − 1 . By the induction hypothesis B = WSW †

where W is unitary and S is upper triangular. Thus,

V †AV =
(

λ ∗0 WSW †) =

(

1 0
0 W

)(

λ ∗
0 S

)(

1 0
0 W †

)

(2.45)

and putting

U = V

(

1 0
0 W

)

and R =

(

λ ∗
0 S

)

,

we see that U is unitary, R is upper-triangular and A = URU † , completing the in-
duction step. To see that the diagonal entries of R are indeed the eigenvalues of A it
suffices to bring the characteristic polynomial of A in the following form: det(λI −A) =
det
[

U †(λI −R)U
]

= det(λI −R) =
∏

i(λ− rii) .

Definition 12. A matrix H ∈ C
n×x is said to be Hermitian if H = H† . It is said to be

Skew-Hermitian if H = −H† .

Recall that an n× n matrix has exactly n eigenvalues in C .

Lemma 13. An Hermitian matrix H ∈ C
n×n can be written as

H = UΛU † =
∑

i

λiuiu
†
i

where U is unitary and Λ = diag(λ1, . . . , λn) is a diagonal that consists of the eigenvalues
of H . Moreover, the eigenvalues are real and the i th column of U is an eigenvector
associated to λi .

Proof. By Theorem 11 (Schur) we can write H = URU † where U is unitary and R is
upper triangular with the diagonal elements consisting of the eigenvalues of A . From
R = U †HU we immediately see that R is Hermitian. Hence it is diagonal and the
diagonal elements must be real.

If ui is the i th column of U , then

Hui = UΛU †ui = UΛei = Uλiei = λiui

showing that it is indeed an eigenvector associated to the i th eigenvalue λi .

The reader interested in properties of Hermitian matrices is referred to [?, Section 4.1].

Exercise 14. Show that if H ∈ C
n×n is Hermitian, then u†Hu is real for all u ∈ C

n .
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A class of Hermitian matrices with a special positivity property arises naturally in many
applications, including communication theory. They provide a generalization to matrices
of the notion of positive numbers.

Definition 15. An Hermitian matrix H ∈ C
n×n is said to be positive definite if

u†Hu > 0 for all non zero u ∈ C
n.

If the above strict inequality is weakened to u†Hu ≥ 0 , then A is said to be posi-
tive semidefinite. Implicit in these defining inequalities is the observation that if H is
Hermitian, the left hand side is always a real number.

Example 16. Show that a non-singular covariance matrix is always positive definite.

Theorem 17. (SVD) Any matrix A ∈ C
m×n can be written as a product

A = UDV †

where U and V are unitary (of dimension m×m and n×n , respectively) and D ∈ R
m×n

is non-negative and diagonal. This is called the singular value decomposition (SVD) of
A . Moreover, letting k be the rank of A , the following statements are true:

(i) The columns of V are the eigenvectors of A†A . The last n− k columns span the null
space of A .

(ii) The columns of U are eigenvectors of AA† . The first k columns span the range of
A .

(iii) If m ≥ n then

D =





diag(
√
λ1, . . . ,

√
λn)

. . . . . . . . . . . . . . . . . . .
0m−n





where λ1 ≥ λ2 ≥ . . . ≥ λk > λk+1 = . . . = λn = 0 are the eigenvalues of A†A ∈ C
n×n

which are non-negative since A†A is Hermitian. If m ≤ n then

D = (diag(
√

λ1, . . . ,
√

λm) : 0n−m)

where λ1 ≥ λ2 ≥ . . . ≥ λk > λk+1 = . . . = λm = 0 are the eigenvalues of AA† .

Note 1: Recall that the nonzero eigenvalues of AB equals the nonzero eigenvalues of BA ,
see e.g. Horn and Johnson, Theorem 1.3.29. Hence the nonzero eigenvalues in (iii) are
the same for both cases.

Note 2: To remember that V is associated to H†H (as opposed to being associated to
HH† ) it suffices to look at the dimensions: V ∈ R

n and H†H ∈ R
n×n .

Proof. It is sufficient to consider the case with m ≥ n since if m < n we can apply the
result to A† = UDV † and obtain A = V D†U † .
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Hence let m ≥ n , and consider the matrix A†A ∈ C
n×n . This matrix is Hermitian. Hence

its eigenvalues λ1 ≥ λ2 ≥ . . . λn ≥ 0 are real and non-negative and one can choose the
eigenvectors v1,v2, . . . ,vn to form an orthonormal basis for C

n . Let V = (v1, . . . ,vn) .
Let k be the number of positive eigenvectors and choose.

ui =
1√
λi
Avi, i = 1, 2, . . . , k. (2.46)

Observe that

u
†
iuj =

1
√

λiλj
v
†
iA

†Avj =

√

λj
λi

v
†
ivj = δij, 0 ≤ i, j ≤ k.

Hence {ui : i = 1, . . . , k} form an orthonormal set in C
m . Complete this set to an or-

thonormal basis for C
m by choosing {ui : i = k+1, . . . ,m} and let U = (u1,u2, . . . ,um).

Note that (2.46) implies

ui

√

λi = Avi, i = 1, 2, . . . , k, k + 1, . . . , n

where for i = k + 1, . . . , n the above relationship holds since λi = 0 and vi is a corre-
sponding eigenvector. Using matrix notation we obtain

U















√
λ1 0

. . .

0
√
λn

. . . . . . . . . . . . . . . . .
0m−n















= AV (2.47)

i.e., A = UDV † . For i = 1, 2, . . . ,m,

AA†ui = UDV †V †D†U †ui

= UDD†U †ui = uiλi

where the last equality follows from the fact that U †ui has a 1 at position i and is
zero otherwise and DD† = diag(λ1, λ2, . . . , λk, 0, . . . , 0) . This shows that λi is also an
eigenvalues of AA† . We have also shown that {vi : i = k+1, . . . , n} spans the null space
of A and from (2.47) we see that {ui : i = 1, . . . , k} spans the range of A .

The following key result is a simple application of the SVD.

Lemma 18. The linear transformation described by a matrix A ∈ R
n×n maps the unit

cube into a parallelepiped of volume | detA| .

Proof. (Question to the students: do we need to review what a unit cube is, that the
linear transformation maps ei into the vector ai that forms the i -th column of A ,
and that the volume of an n -dimensional object (set) A is

∫

A dx?) From the singular
value decomposition, A = UDV † , where D is diagonal and U and V are orthogonal
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matrices. The linear transformation associated to A is the same as that associated to
U †AV = D . (We are just changing the coordinate system). But D maps the unit vectors
e1, e2, . . . , en into λ1e1, λ2e2, . . . , λnen . Hence, the unit cube is mapped into a rectangle
of sides λ1, λ2, . . . , λn . Its volume is |∏λi| = | detD| = | detA| .

Appendix 2.B Densities After Linear Transformations

The previous result leads to the following fundamental result.

Theorem 19. Let X be an n -rv of given pdf fX(x) , A ∈ R
n×n a non-singular matrix,

and Y be defined through the linear transformation Y = AX . The pdf of Y is given
by

fY (y) =
fX(A−1y)

| detA|

Outline of the proof : The probability that X is inside an infinitesimally small cube δA
(in n -dimensions) is fX(x∗)δA (plus terms that become negligible as the volume of δA
goes to zero), where x∗ is any point inside δA . Now x∗ maps into y∗ = Ax∗ and δA
into some δB of volume Vol(δB) = Vol(δA)| detA| . Since the probability that Y is
inside δB is the same as the probability that X is inside δA we have (in the limit):

Vol(δB)fY (y∗) = Vol(δA)fX(x∗).

Solving for fY (y∗) yields the desired result.

Appendix 2.C Gaussian Random Vectors

We now study Gaussian random vectors. A Gaussian random vector is nothing else than
a collection of jointly Gaussian random variables. We learn to use vector notation since
this will simplify matters significantly.

Recall that a random variable W is a mapping W : Ω → R from the sample space Ω
to the reals R . W is a Gaussian random variable with mean m and variance σ2 if and
only if (iff) its probability density function (pdf) is

fW (w) =
1√

2πσ2
exp

{

−(w −m)2

2σ2

}

.

Since a Gaussian random variable is completely specified by its mean m and variance
σ2 , we use the short-hand notation N (m,σ2) to denote its pdf. Hence W ∼ N (0, σ2) .

An n -dimensional random vector (n -rv) X is a mapping X : Ω → R
n . It can be seen as

a collection X = (X1, X2, . . . , Xn)
T of n random variables. The pdf of X is the joint pdf
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of X1, X2, . . . , Xn . The expected value of X , denoted by EX or by X̄ , is the n -tuple
(EX1, EX2, . . . , EXn)

T . The covariance matrix of X is KX = E[(X − X̄)(X − X̄)T ] .
Notice that XXT is an n × n random matrix, i.e. a matrix of random variables, and
the expected value of such a matrix is, by definition, the matrix whose components are
the expected values of those random variables. Notice that a covariance matrix is always
Hermitian.

The pdf of a vector W = (W1,W2, . . . ,Wn)
T that consists of independent and identically

distributed (iid) ∼ N (0, σ2) components is

fW(w) =
n
∏

i=1

1√
2πσ2

exp

(

− w2
i

2σ2

)

(2.48)

=
1

(2πσ2)n/2
exp

(

−wTw

2σ2

)

. (2.49)

The following is one of several possible ways to define a Gaussian random vector.

Definition 20. The random vector Y ∈ R
m is a zero-mean Gaussian random vector and

Y1, Y2, . . . , Yn are zero-mean jointly Gaussian random variables, iff there exists a matrix
A ∈ R

m×n such that Y can be expressed as

Y = AW (2.50)

where W is a random vector of iid ∼ N (0, 1) components.

Note 21. From the above definition it follows immediately that linear combination of
zero-mean jointly Gaussian random variables are zero-mean jointly Gaussian random vari-
ables. Indeed, Z = BY = BAW .

Recall that if Y = AW then

fY (y) =
fW(A−1y)

| detA| .

When W has iid ∼ N (0, 1) components,

fY (y) =
exp

(

− (A−1y)T (A−1y)
2

)

(2π)n/2| detA| .

The above expression can be simplified and brought to the standard expression

fY (y) =
1

√

(2π)n detKY

exp

(

−1

2
yTK−1

Y y

)

(2.51)

using KY = EAW (AW )T = EAWW TAT = AInA
T = AAT to obtain

(A−1y)T (A−1y) = yT (A−1)TA−1y

= yT (AAT )−1y

= yTK−1
Y y
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and

√

detKY =
√

detAAT =
√

detA detA =| detA | .

Fact 22. Let Y be a zero-mean random vector with arbitrary covariance matrix KY and
pdf as in (2.51). Since a covariance matrix is Hermitian, we we can write (see Appendix
2.A)

KY = UΛU † (2.52)

where U is unitary and Λ is diagonal. It is immediate to verify that U
√

ΛW has
covariance KY . This shows that an arbitrary zero-mean random vector Y with pdf as
in (2.51) can always be written in the form Y = AW where W has iid ∼ N (0, 1)
components.

The contrary is not true in degenerated cases. We have already seen that (2.51) follows
from (2.50) when A is a non-singular squared matrix. The derivation extends to any
non-rectangular matrix A , provided that it has linearly independent rows. This result is
derived as a homework exercise. In that exercise we also see that it is indeed necessary
that the rows of A be linearly independent since otherwise KY is singular and K−1

Y is
not defined. Then (2.51) is not defined either. An example will show how to handle such
degenerated cases.

It should be pointed out that many authors use (2.51) to define a Gaussian random vector.
We favor (2.50) because it is more general, but also since it makes it straightforward to
prove a number of key results associated to Gaussian random vectors. Some of these are
dealt with in the examples below.

In any case, a zero-mean Gaussian random vector is completely characterized by its co-
variance matrix. Hence the short-hand notation Y ∼ N (0, KY ) .

Note 23. (Degenerate case) Let W ∼ N (0, 1) , A = (1, 1)T , and Y = AW . By our
definition, Y is a Gaussian random vector. However, A is a matrix of linearly dependent
rows implying that Y has linearly dependent components. Indeed Y1 = Y2 . This also
implies that KY is singular: it is a 2 × 2 matrix with 1 in each component. As already
pointed out, we can’t use (2.51) to describe the pdf of Y . This immediately raises
the question: how do we compute the probability of events involving Y if we don’t
know its pdf? The answer is easy. Any event involving Y can be rewritten as an
event involving Y1 only (or equivalently involving Y2 only). For instance, the event
{Y1 ∈ [3, 5]} ∩ {Y2 ∈ [4, 6]} occurs iff {Y1 ∈ [4, 5]} . Hence

Pr {Y1 ∈ [3, 5]} ∩ {Y2 ∈ [4, 6]} = Pr {Y1 ∈ [4, 5]} = Q(4) −Q(5).

Exercise 24. Show that the i th component Yi of a Gaussian random vector Y is a
Gaussian random variable.
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Solution: Yi = AY when A = eTi is the unit row vector with 1 in the i -th component
and 0 elsewhere. Hence Yi is a Gaussian random variable. To appreciate the convenience
of working with (2.50) instead of (2.51), compare this answer with the tedious derivation
consisting of integrating over fY to obtain fYi

(see Homework 1, Problem 1).

Exercise 25. Let U be an orthogonal matrix. Determine the pdf of Y = UW .

Solution: Y is zero-mean and Gaussian. Its covariance matrix is KY = UKWUT =
Uσ2InU

T = σ2UUT = σ2In , where In denotes the n × n identiy matrix. Hence, when
an n -dimensional Gaussian random vector with iid ∼ N (0, σ2) components is projected
onto n orthonormal vectors, we obtain n iid ∼ N (0, σ2) random variables. This fact
will be used often.

Exercise 26. (Gaussian random variables are not necessarily jointly Gaussian) Let Y1 ∼
N (0, 1) , let X ∈ {±1} be uniformly distributed, and let Y2 = Y1X . Notice that Y2 has
the same pdf as Y1 . This follows from the fact that the pdf of Y1 is an even function.
Hence Y1 and Y2 are both Gaussian. However, they are not jointly Gaussian. We come
to this conclusion by observing that Z = Y1 + Y2 = Y1(1 +X) is 0 with probability 1/2.
Hence Z can’t be Gaussian.

Exercise 27. Is it true that uncorrelated Gaussian random variables are always indepen-
dent? If you think it is . . . think twice. The construction above labeled “Gaussian random
variables are not necessarily jointly Gaussian” provides a counter example (you should be
able to verify without much effort). However, the statement is true if the random variables
under consideration are jointly Gaussian (the emphasis is on “jointly”). You should be
able to provide the easy proof using (2.51). The contrary is always true: random vari-
ables (not necessarily Gaussian) that are independent are always uncorrelated. Again,
you should be able to provide the straightforward proof. (You are strongly encouraged
to brainstorm this and similar exercises with other students. Hopefully this will create
healthy discussions. Let us know if you can’t clear every doubt this way . . . we are very
much interested in knowing where the difficulties are.)

Definition 28. The random vector Y is a Gaussian random vector (and Y1, . . . , Yn are
jointly Gaussian random variables) iff Y −m is a zero mean Gaussian random vector as
defined above, where m = EY . If the covariance KY is non-singular (which implies that
no component of Y is determined by a linear combination of other components), then
its pdf is

fY (y) =
1

√

(2π)n detKY

exp

(

−1

2
(y − Ey)TK−1

Y (y − Ey)

)

.
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Appendix 2.D Inner Product

For a, b ∈ C
n , we define the inner product

〈a, b〉 =
n
∑

i=1

aib
∗
i

where b∗i is the complex conjugate of bi . The inner product is Hermitian symmetric,
meaning that 〈a, b〉 = 〈b,a〉∗ . It is also Hermitian bilinear in the following sense. If
α and β are in C and a, b, c in C

n , then 〈αa + βb, c〉 = α〈a, b〉 + β〈b, c〉 . Using the
Hermitian symmetry it immediately follows that 〈c, αa + βb〉 = α∗〈c, a〉 + β∗〈c, b〉 . The
squared norm of a ∈ C

n is
‖ a ‖2= 〈a,a〉.

Using linearity, we immediately obtain

‖ a − b ‖2 = 〈a − b,a − b〉
=‖ a ‖2 + ‖ b ‖2 −2Re{〈a, b〉}.

The above generalizes (a − b)2 = a2 + b2 − 2ab, a, b ∈ R , and | a − b |2=| a |2 + | b |2
−2Re{a · b}, a, b ∈ C .

If y,u ∈ C
n and ‖ u ‖2= 1, then we may think of | 〈y,u〉 | as the length of the vector

that we obtain when we project y onto u . (Check this out for u = (1, 0)T .)

An hyperplane in C
n is and n− 1 dimensional subspace of the form

{y ∈ C
n : 〈y,u〉 = 0}

where u ∈ C
n is an arbitrary but fixed vector. The hyperplane defined by u is the set

of vectors that are orthogonal to u . An hyperplane always contains the origin.

An affine space is a translate of an hyperplane. It has the general form

{y ∈ C
n : 〈y,u〉 = c}

where u ∈ C
n is an arbitrary but fixed vector and c ∈ C is an arbitrary but fixed scalar.

Appendix 2.E A Fact About Triangles

To determine an exact expression of the probability of error, in Example 7 we use the
following fact about triangles.
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a

β

γ

αc

b
a

β

γ

αc

b b sin(180 − α)
a sin β

For a triangle with edges a , b , c and angles α , β , γ (see the figure), the following
relationship holds:

a

sinα
=

b

sin β
=

c

sin γ
. (2.53)

To prove the equality relating a and b we project the common vertex γ onto the extension
of the segment connecting the other two edges (α and β ). This projection gives rise to
two triangles that share a common edge whose length can be written as a sin β and as
b sin(180 − α) (see right figure). Using b sin(180 − α) = b sinα leads to a sin β = b sinα .
The second equality is proved similarly. 2
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