
120 Chapter 5.

Proof of the sampling theorem: By assumption, sF(f) = 0 , f /∈ [−B,B] . Hence, we may
think of sF(f) as being obtained by multiplying its periodic extension, say s̃F(f) , with
1[−B,B](f) . The periodic extension may be written as a Fourier series, yielding

sF(f) = s̃F(f)1[−B,B](f) =
∑

k

Ake
+j 2π

2B
fk1[−B,B](f).

Taking the Fourier transform on both sides, using

1[−B,B](f) ⇔ 1

T
sinc(

t

T
), T =

1

2B
,

and the time shift property of the Fourier transform

h(t− τ) ⇔ hF(f)e−j2πfτ ,

we obtain

s(t) =
∑

k

Ak
T

sinc

(

t+ kT

T

)

.

We still need to determine Ak

T
. It is straightforward to determine Ak from its definition,

but it is easier to observe that if we plug in t = nT on both sides of the expression above
we obtain s(nT) = A

−n

T
. This completes the proof. To show that it is straightforward,

we also determine Ak from the definition:

Ak =
1

2B

∫ B

−B
sF(f)e−j

2π

2B
kfdf =

1

2B

∫ ∞

−∞
sF(f)e−j

2π

2B
kfdf = Ts(−kT),

where the first equality is the definition of the Fourier coefficient Ak , the second uses
the fact that sF(f) = 0 for f /∈ [−B,B] , and the third is the inverse Fourier transform
evaluated at t = −kT . 2

Appendix 5.B Power Spectral Density

In this appendix e derive an expression for the power spectral density of a general signal
in the form

X(t) =
∞
∑

i=−∞
Xiψ(t− iT − Θ), (5.10)

where ψ(t) is some unit-energy pulse, {Xi}∞i=−∞ is a discrete-time wide-sense stationary
sequence, and Θ is a random variable that is uniformly distributed over the interval
[0, T) . Except for the random delay Θ and the fact that the symbol sequence is infinite,
this signal has the general form of symbol-by-symbol on a pulse train. Accounting for
a random delay Θ is both realistic and necessary. It is realistic since without it it we
would imply that an observer of the signal X(t) uses a time reference known to the

5.B. Power Spectral Density 121

sender and that the sender emits the signal in such a way that by the time it reaches the
observer it has a predetermined position on the time line. In reality, an observer expects
a random shift in time due to clock misalignments but also due to the time it takes for
the signal to reach the observer. The reason why we have not mentioned Θ so far is that
its presence up until now would have made no difference other than making the notation
more combersome. Now we need Θ since without it the stochastic process X(t) is not
wide-sense stationary and its power spectral density is not defined.

The first step towards the power spectral density is to compute the correlation RX(t +
τ, t) := E[X(t+ τ)X∗(t)] . It will be expressed as a function of

RX [i] = E[Xj+iXj] (5.11)

and

Rψ(v) =
1

T

∫ ∞

−∞
ψ(α+ v)ψ(α)dα : (5.12)

RX(t+ τ, t) = E[X(t+ τ)X∗(t)]

= E[
∞
∑

i=−∞
Xiψ(t+ τ − iT − Θ)

∞
∑

j=−∞
X∗
jψ

∗(t− jT − Θ)]

= E[
∞
∑

i=−∞

∞
∑

j=−∞
XiX

∗
jψ(t+ τ − iT − Θ)ψ∗(t− jT − Θ)]

=
∞
∑

i=−∞

∞
∑

j=−∞
E[XiX

∗
j]E[ψ(t+ τ − iT − Θ)ψ∗(t− jT − Θ)]

=
∞
∑

i=−∞

∞
∑

j=−∞
RX [i− j]E[ψ(t+ τ − iT − Θ)ψ∗(t− jT − Θ)]

=
∞
∑

k=−∞
RX [k]

∞
∑

i=−∞

1

T

∫ T

0

ψ(t+ τ − iT − θ)ψ∗(t− iT + kT − θ)dθ

=
∞
∑

k=−∞
RX [k]

1

T

∫ ∞

−∞
ψ(t+ τ − iT − θ)ψ∗(t− iT + kT − θ)dθ.

Hence

RX(τ) =
∞
∑

k=−∞
RX [k]

1

T
Rψ(τ − kT), (5.13)

where, with a slight abuse of notation, we have written RX(τ) instead of RX(t+ τ, t) to
emphasize that RX(t + τ, t) depends only on the difference τ between the first and the
second variable. It is straightforward to verify that E[X(t)] does not depend on t either.
Hence X(t) is a wide-sense stationary process.

122 Chapter 5.

The power spectral density SX is the Fourier transform of RX . Hence,

SX(f) =
|ψF(f)|2

T

∑

k

RX [k] exp(−j2πfT).

Notice that the summation is the discrete-time Fourier transform of {RX [k]}∞k=−∞ eval-
uated at fT .

In many cases of interest {Xi}∞i=−∞ is a zero-mean iid sequence. Then RX [k] = Eδk
where E = E[|Xj|2] and the formulas simplify to

RX(τ) = ERψ(τ) (5.14)

SX(f) = E |ψF(f)|2
T

. (5.15)

Example 47. When ψ(t) =
√

1
T
sinc(t

T
) and RX [k] = Eδk , the spectrum is SX(f) =

E1[−B,B](f) , where B = 1
2T

. By integrating the power spectral density we obtain the
power 2BE = E

T
. This is consistent with our expectation: When we use the pulse sinc(t

T
)

we expect to obtain a spectrum which is flat for all frequencies in [−B,B] and vanishes
outside this interval. The energy per symbol is E . Hence the power is E

T
. 2

Chapter 6

Convolutional Coding and Viterbi

Decoding

In Chapter 5 we have focused on how to choose the ψi(t) = ψ(t− iT) that goes into the
general expression

∑

siψi(t) . In this chapter we focus on the symbols si .

At the transmitter we will do convolutional coding. The receiver will implement the
Viterbi algorithms – a neat and clever way to decode efficiently in many circumstances.
To analyze the bit-error probability we will introduce a few new tools, notably detour
flow graphs and generating functions.

The signals that we will construct will have the following property: The transmitter and
the receiver adapt naturally to the number k of bits that need to be communicated and
the duration of the transmission grows linearly with the number of bits; the bandwidth is
constant (independently of the number of bits transmitted) and the encoding and decoding
operations are done at low complexity and essentially “on the fly.” As usual, we assume
that signals are passed through the AWGN channel.

6.1 The Transmitter

Like in bit-by-bit on a pulse train, we assume that the entire transmitted signal has the
form1

si(t) =
n
∑

j=1

sijψ(t− jT),

1For most of what we do in this chapter we could assume that the signal has the general form
si(t) =

∑n

j=1
sijψj(t) . We prefer to be more specific and focus to situations of real practical interest.

123

124 Chapter 6.

-
Dj -

Dj−1 Dj−2

×m

�
�

�
�

�
��*

H
H

H
H

H
HHj

H
H

H
H

H
HHY

×m

�
�

�
�

�
���

-

-

X2j−1

X2j
?

Figure 6.1: Rate 1
2

convolutional encoder.

where i ∈ {0, 1, . . . , 2k − 1} for some integer k ,

sij = xij
√

Es

xij ∈ {±1}.

In both cases we will go straight from the bit sequence to the symbol sequence without
explicitly passing through the message index i that labels si(t) . Unlike for bit-by-bit on
a pulse train, k < n . This implies that when the index i runs over all possible 2k values,
the codeword x = (xi1, . . . , xin) does not range over all possible 2n n -length sequences
with value in {±1}n . Only a subset of such sequences are used. This is what coding is
all about. It helps since the fact that not all sequences with components taking value in
±1 produce a valid signal decreases the chances that a transmitted signal plus noise looks
more like an alternative signal rather than the original. In bit-by-bit on a pulse train we
would not speak of coding since any n tuple in {±Eb}n is a valid signal space point. For
block-orthogonal signaling all components of si except one are zero. This is a form of
coding.

The next step is to specify the signal space points that we use. We specify our 2k sequences
xi1, . . . , xin by means of an encoder. For our encoder, depicted in Figure ??, n = 2k .

The encoder input is a uniformly distributed k -length random vector D = (D1, . . . Dk)
that models the information bits (the source output) to be transmitted. The k encoder
output pairs are serialized to form an n -length random sequence X = (X1, X2, . . . , Xn)
used to modulate the pulse train. Hence X

√
Eb is the corresponding signal space point.

The multiplication symbol in Figure ?? represents the usual multiplication over R . How-
ever, this operation is actually the addition over the field that one can define on the set
{±1} . Hence the encoder is linear. More on this in problem 6.

There are alternative ways to describe the encoder. One such alternative way that will
turn out to be useful in determining the error probability is by means of the state diagram
shown below.

6.2. The Receiver 125

1,1

−1,1

−1,−1

1,−1

1| − 1, 1

1| − 1,−1

−1|1, 1

1|1,−1

−1| − 1, 1

−1| − 1,−1

−1|1,−1

1|1, 1

This is a four state machine. Each box represents a state. States are labeled by the
content of the two shift registers of the encoder (previous picture). Arrows represent
transitions. There are two possible transitions from each state. The input symbol Dj

decides which of the two possible transitions is taken at time j . Transitions are labeled
by Dj|X2j−1, X2j .

We agree that initially the encoder is in some arbitrary but fixed state. We assume that
this state is (1, 1) .

The following example shows a source output sequence of length k = 5 and the corre-
sponding encoder output sequence of length n = 10.

Dj 1 −1 −1 1 1
X2j−1, X2j 1, 1 −1,−1 −1, 1 −1, 1 −1,−1

j 1 2 3 4 5

6.2 The Receiver

Let ‖ si ‖2=
∑n

j=1Esx
2
ij = nEs be the signal’s energy (the same for all signals).

A maximum likelihood (ML) decoder decides for one of the i that maximizes

〈r, si〉 −
nEs
2
,

where the second term is irrelevant since it does not depend on i and r is the received
signal.

126 Chapter 6.

Hence the ML decoder picks (one of) the sequence(s) si1, . . . , sin that maximizes
∫

r(t)
n
∑

j=1

sijψ(t− jT)dt

=
n
∑

j=1

sij

∫

r(t)ψ(t− jT)dt

=
n
∑

j=1

sijyj

=
√

Es

n
∑

j=1

xijyj

where we have defined

yj =

∫

r(t)ψ(t− jT)dt.

Recall that yj is the output at time jT of the filter with impulse response ψ(−t) and
input r(t) .

The difficulty in finding one of the i that maximizes 〈xi,y〉 is that it appears at first
that we have to test all 2k such inner products. Typically k is much larger than 100.
If k = 100 , with a computer that does 109 inner products 〈xi,y〉 in a second it takes
roughly (using 230 to approximate 109) 2100/230 = 270 seconds to compute all inner
products. This makes almost 4 × 1013 years. The universe is only 20 × 109 years old!

What we need is a method that finds the maximum 〈x,y〉 by making a number of
operations that grows linearly (as opposed to exponentially) in k . By cleverly making
use of the encoder structure we will see that this can be done. The result is the Viterbi
algorithm.

To describe the Viterbi algorithm (VA) we need the notion of a trellis. The trellis is an
unfolded transition diagram that keeps track of the passage of time. If we assume that we
start at state (1, 1) , that we transmit k = 5 source digits, and that we append 2 dummy

source digits to ensure that at the end of the transmission the encoder is again in state
(1, 1) , the trellis diagram looks as in the top drawing of figure 6.2. For each index i ,
there is exactly one path in the trellis between the root (the leftmost node) and the toor2

(the rightmost node) which is labeled by the sequence xi .

Unlike in the state diagram, in the mentioned trellis we have labeled transitions with the
encoder output symbols only. We have dropped the encoder input from the label since
we have ordered states in such a way that the lower branch leaving a state at depth j
corresponds to Dj = 1. Hence it is straightforward to associate a path in the trellis with
the corresponding source sequence.

To decode we do the following. Let y = (y1, y2 . . . yn)
T be the n tuple of matched filter

output symbols. Each xi corresponds to a path in the trellis and the sequence of labels

2Toor is root read backwards.

6.2. The Receiver 127

that we read out along that path is exactly xi . We use y to relabel the path in the
trellis corresponding to xi . Specifically instead of xi,2j−1, xi,2j we now write the branch

metric 〈(xi,2j−1xi,2j)
T , (y2j−1, y2j)

T 〉 . Then, by adding the path metric along the path
corresponding to xi we obtain

∑

j〈(xi,2j−1xi,2j)
T , (y2j−1, y2j)

T 〉 = 〈xi,y〉 . We call this
the path metric. The path metric is the sum of the branch metric along a specific path
between root and toor. The second trellis in Fig. 6.2 has been labeled with branch
metrics.

Maximum likelihood decoding now amounts to finding (one of) the path(s) with the
largest path metrics. The VA is an efficient way to do this. It is convenient to think of
the trellis as a road map with branch metrics instead of distances. The job of the VA is
to find the longest (not the shortest) path between root and toor. How to do this is best
explained by means of an example. (See example in class and bottom two trellises in Fig.
6.2).

128 Chapter 6.

−4 5

4 3

−7

−1

6

0

10

4

1,1

−1,1

1,−1

−1,−1

STATE

−4

4

1

−1

3

2

−2

5

−5

−7

7
3

−3
5

−5

5
10

−10

−10

10

0

0

0
−6

6

6

−6

0

0

0

0

3

−3

−3

−5 0

4

4

20

16

20

20

22

10

29

25 31

1,1−1,−1

−1,−1

1,1

−1,1

1,−1

−1
,1

1,−1

1,1−1,−1

−1,−1

1,1

−1,1

1,−1

−1
,1

1,−1

1,1−1,−1

−1,−1

1,1

−1,1

1,−1

−1
,1

1,−1

1,1

−1,1

1,−1

−1,−1

STATE

−4

4

1

−1

3

2

−2

5

−5

−7

7
3

−3

5

−5

5
10

−10
−10

10

0

0

0
−6

6

6

−6

0

0

0

0

3

−3

−3

−5 0

1,1

−1,1

1,−1

−1,−1

STATE

−1,−1

1,1

−1,−1

1,1

−1
,1

1,−1
−1,−1

1,1
−1,−1

1,1

−1,1

−1
,1

1,−1

−4 5

4 3

−7

−1

6

0

10

4

1,1

−1,1

1,−1

−1,−1

STATE

−4

4

1

−1

3

−2

5

−5

−7

7
3

−3

5

−5

5
10

−10

−10

10

0

0

0
−6

6

6

−6

0

0

0

0

3

−3

−3

−5 0

4

4

20

16

20

20

22

10

29

25

2

31

Figure 6.2: The Viterbi algorithm. Top figure: Trellis representing the encoder.
The upper transition leaving a state corresponds to source symbol −1 , the lower

transition to source symbol 1 . Transitions are labeled with the corresponding
output symbols; Second figure: Transitions have been labeled with the branch

metric corresponding to the received sequence
(1, 3), (−2, 1), (4,−1), (5, 5), (−3,−3), (1,−6), (2,−4) (parentheses have been

inserted for convenience only); Third figure: Each state has been labeled with the
metric of the surviving path and non-surviving transitions have been dashed; Fourth
figure: Tracing back from the end we find the decoded path (bold). It corresponds

to source sequence 1, 1, 1, 1,−1, 1, 1 .

6.3. Bit-Error Probability 129

6.3 Bit-Error Probability

We assume that the initial state is (1, 1) and we transmit a number k of bits.

As we have done so far, we determine (an upper bound to) the probability of error by
first conditioning on a fixed transmitted signal. It will turn out that our expression does
not depend on the selected transmitted signal.

Each signal that can be produced by the transmitter corresponds to a path in the trellis.
The path corresponding to the signal that we use to bound the bit error probability will
be called the reference path. For now the reference path is the all-one path. This is
the path generated by the all-one source symbols. The corresponding encoder output
sequence also consists of all ones.

The first new concept needed is that of a detour. Detours are those segments of the path
selected by the Viterbi decoder that do not correspond to the reference path.3 A detour
starts at a node where the decoded path diverges from the reference path and ends at
some later node where the decoded path merges again with the reference path. (See the
figure below.)

Start 1st detour End 1st detour

Toor

All 1 path

Root

End 2nd detourStart 2nd detour

6.3.1 Counting Detours

The basic idea to determine the bit error probability is simple. For each detour we
determine the probability that the Viterbi decoder takes this detour and the number of
information bit errors we make when this happens. These two quantities allow us, in
principle, to determine the average bit-error probability. We will actually work with an
upper bound to the probability that the Viterbi decoder takes a given detour. For a
given detour, our upper bound will depend on the number d of discrepancies between the
encoder output sequence corresponding to the detour and that of the reference path.

Example 48. Regardless of the reference path, for our example there is a shortest detour
starting at any state in the trellis (provided we are sufficiently away from the final state
to avoid ”edge effect”). This shortest detour spans 3 trellis sections. (A trellis section is
the portion of the trellis between all states at one depth and all states at the next depth).
The corresponding parameters are i = 1 and d = 5 . 2

3For an analogy, think of the trellis as a road map, of the reference path as of an intended road for
your journey, and the path selected by the Viterbi decoder as of the actual road that you take. Once on
a while you are forced to take a detour with respect to the intended road.

130 Chapter 6.

To avoid edge effects, we will assume that the trellis is semi infinite, i.e., it extends to
infinity to the right. For any given point (depth) on the reference path, how many detours
are there with given parameters i and d? We now proceed to find this number, denoted
by a(i, d) . It will be one of the main ingredient in determining our upper bound to the
bit error probability.

There is a one-to-one correspondence between a detour with respect to the all-one path
and a path between state a and e in the following detour flow graph.

EndStart a e

db

c
D

D2ID2

ID

ID

D

I

The label I iDd , (i and d nonnegative integers), on a transition denotes that this tran-
sition increases the discrepancies between the two input sequences (reference path and
detour) by i and between the two output sequences by d .

Now we show how to determine a(i, d) . We will actually determine the generating function

T (I,D) of a(i, d) defined as

T (I,D) =
∑

i,d

I iDda(i, d)

You should think of I and D as “place holders” without any physical meaning. It is like
describing the coefficients a0, a1, . . . , an−1 by means of the polynomial p(x) = a0 + a1x+
. . .+an−1x

n−1 . In our case, as we will see, having the generating function T (I,D) is more
convenient than having a(i, d) for all i and all d . We determine T (I,D) recursively as
follows. We introduce auxiliary generating functions, one for each intermediate state of
the detour flow graph, namely:

Tb(I,D) =
∑

i,d

I iDdab(i, d) (6.1)

Tc(I,D) =
∑

i,d

I iDdac(i, d) (6.2)

Td(I,D) =
∑

i,d

I iDdad(i, d) (6.3)

6.3. Bit-Error Probability 131

As a(i, d) is the number of paths in the detour flow graph that start at Start, end at End,
and have parameters i and d , so ab(i, d) is the number of paths in the detour flow graph
that start at Start, end at b , and have parameters i and d . Similar definitions apply for
ac(i, d) and ad(i, d) . From the detour flow graph we immediately see that the following
relationships hold:

Writing Tc instead of Tc(I,D) we have the following relationships:

Tb = Ta ID
2 + Td I

Tc = Tb ID + Tc ID

Td = TbD + TcD

T = TdD
2

The above system may be solved for T by pure formal manipulations. (Like solving a
system of equations). The result is

T (I,D) =
ID5

1 − 2ID
.

The above expression T (I,D) is what we need. However, to show that one can indeed
obtain a(i, d) from T (I,D) , using the expansion 1

1−x = 1 + x+ x2 + x3 + · · · we write

T (I,D) =
ID5

1 − 2ID
= ID5(1 + 2ID + (2ID)2 + (2ID)3 + · · · (6.4)

= ID5 + 2I2D6 + 22I3D7 + 23I4D8 + · · · (6.5)

This means that there is one path with parameters d = 5, i = 1, that there are two
paths with d = 6, i = 2, etc. In general, for i = 1, 2, . . . we have

a(i, d) =

{

2i−1, d = i+ 4

0, otherwise.

Next we show that a(i, d) does not depend on the reference path, provided that the
encoder is linear.

Let a ∈ D∗ , be the reference encoder-input sequence. Let f : D∗ → D∗ be the encoder
map. Hence f(a) is the encoder output corresponding to input sequence a .

For a sequence a ∈ D∗ and positive integers k, l , we define alk = (ak, ak+1, . . . , al) to be
the subsequence that starts with index k and ends with index l , k ≤ l . The set of all
such sequences is denoted by {±1}lk .

We will be interested in knowing how many “-1”are contained in a given sequence a ∈
{±1}lk . Let w(a) denote this number.

w(a) =| {j : aj = −1} |

132 Chapter 6.

Let Aj,i,d be the set of detours that leave the all-one sequence at depth j (j = 0, 1, . . .)
and has parameters i and d , i.e.

Ai,j,d =
{

c ∈ {±1}∞1 : w(cj1) = 0, cj+1 = −1, w(c) = i, w(f(c)) = d
}

Then a(i, d) =| Aj,i,d | , where the right hand side does not depend on the depth j since
the encoder is time-invariant in the following sense. If input a produces a detour to the
all-one path that starts at depth j and has parameters i and d , then 1a produces a
detour that starts at depth j + 1 and has parameters i and d .

Similarly define Ai,j,d(a) as the set of detours with respect to the reference path deter-
mined by the input sequence a :

Aj,i,d(a) =
{

e ∈ D∗ : w((ea)j1) = 0, (ea)j+1 = −1, w(ea) = i, w(f(e)f(a)) = d
}

.

Let aj,i,d(a)
△
=| Aj,i,d(a) | be the number of such detours. We want to show that for all a ∈

D∗ , aj,i,d(a) = a(i, d) . It suffices to show that there exists a one-to-one correspondence
between the elements of Aj,i,d(a) and those of Aj,i,d .

We claim that the mapping
g : Aj,i,d(a) → Aj,i,d

that sends e ∈ Aj,i,d(a) to ea is such a correspondence.

If we let c = ea and use the definition of Aj,i,d(a) and the linearity of f which implies
f(e)f(a) = f(ea) = f(c) , we see immediately that c ∈ Aj,i,d. Now let c ∈ Aj,i,d . The
inverse mapping g−1 maps c to e = ca . Using the definition of Aj,i,d , the fact that
ea = caa = c and the linearity of f which implies f(e)f(a) = f(ea) = f(c) we
immediately verify that c ∈ Aj,i,d(a) . This completes the proof.

6.4 Upper Bound to Pb

We are now ready for the final step, namely the derivation of a tight upper bound to the
bit-error probability.

Fix an arbitrary encoder input sequence, let x = x1, x2 . . . , xn be the corresponding
encoder output sequence and s =

√
Esx be the corresponding point in signal space. The

transmitted signal is

s(t) =
∑

siψ(t− iT).

We transmit this signal over an AWGN channel with power spectral density N0/2 . Let
r(t) = s(t) + z(t) be the received signal (where z(t) is a sample path of the noise process
Z(t)) and let

y = (y1, . . . , yn)
T , yi = 〈r, ψi〉

be a sufficient statistic.

6.4. Upper Bound to Pb 133

The Viterbi algorithm labels each branch in the trellis with the corresponding branch
metric and finds the path through the trellis with the largest path metric. A branch from
depth j to j+1 corresponding to output symbols x2j−1, x2j is assigned the branch metric
y2j−1x2j−1 + y2jx2j .

Consider the sample path through the trellis selected by the Viterbi algorithm.

Let wj, j = 0, 1, . . . , k − 1 , be the number of errors made on a detour that begins at
depth j . If at depth j the VD is on the correct path or if it follows a detour started
earlier then wj = 0. Let Wj be the corresponding random variable (over all possible
noise realizations).

The total of source symbol errors for the path selected by the VD is

k−1
∑

j=0

wj

and 1
k

∑k−1
j=0 wj is the fraction errors with respect to the k source symbols. Hence we

define the bit-error probability

Pb
△
= E

1

k

[

k−1
∑

j=0

Wj

]

=
1

k

∑

EWj

Let us now focus on a detour. If it starts at depth j and ends at depth l = j + m ,
then the corresponding encoder-output symbols are some 2m tuple ū ∈ {±1}2m . Let
u = (x2j, . . . , x2l−1)

T ∈ {±1}2m be the corresponding sequence of the correct path and
let ρ be the portion of y corresponding to the same interval, i.e., ρ = (y2j, . . . , y2l−1)

T .

Detour starts at depth

Detour ends at depth

j
ū

u

l = j +m

Let d be the number of positions in which u and ū differ (also called Hamming distance
d(u, ū) between u and ū).

Notice that the Euclidean distance between the corresponding waveforms is the distance
between

√
Esu and

√
Esū which is dE = 2

√
Esd .

A necessary (but not sufficient) condition for the Viterbi decoder to take the detour under
consideration is that

〈ρ,
√

Esu〉 ≤ 〈ρ,
√

Esū〉.

134 Chapter 6.

This condition is satisfied iff

‖ ρ −
√

Esu ‖2≥‖ ρ −
√

Esū ‖2 .

If u is the correct sequence and ū is the only alternative, then the above event happens
with probability

Q

(

dE
2

1

σ

)

where σ2 = N0

2
and dE = 2

√
Esd .

Recall (the Bhattacharyya bound for the Gaussian channel) that

Q

(

dE
2σ

)

= Q

(

√

2Esd

N0

)

≤ e
−Esd

N0 = zd,

where we have defined z = e
−Es

N0 . Using the union of events bound

Pr{Wj = i} ≤
∑

d

a(i, d)zd

and
EWj =

∑

i

iPr{Wj = i} ≤
∑

i,d

ia(i, d)zd,

we obtain

Pb =
1

k

k−1
∑

j=0

EWj ≤
1

k

k−1
∑

j=0

∑

i,d

a(i, d)zdi =
∑

i,d

a(i, d)zdi

Recall that T (I,D) =
∑

i,d I
iDda(i, d) . Thus

Pb ≤
∂

∂I
T (D, I)

∣

∣

∣

∣

I=1, D=z

Pb ≤
∂

∂I
T (D, I)

∣

∣

∣

∣

I=1, D=z

This result can be generalized to an encoder that, in each trellis section, takes k0 infor-
mation symbols and produces n0 channel symbols, n0 ≥ k0 (in our example k0 = 1 and
n0 = 2) , and for any memoryless channel (not just the AWGN).

In our particular example

T (D, I) =
ID5

1 − 2ID
∂T

∂I
=

D5

(1 − 2ID)2
.

Thus

Pb ≤
z5

(1 − 2z)2
,

where z = e
− Eb

2N0 and Es = Eb

2
(we are transmitting two channel symbols per information

bit).

6.5. Concluding Remarks 135

6.5 Concluding Remarks

What have we done and how does it compare to what we have done before?

It is convenient to think of the bit-by-bit as our starting point.

s(t) =
n−1
∑

i=0

siψ(t− iT)

si ∈ {±
√

Es}.
The relevant design choices for this system are:

Rb = Rs =
1

T
bit rate

Eb = Es energy per bit

Pb = Q

(√
Es
σ

)

, bit-error probability.

Using σ =
√

N0

2
and the upper bound Q(x) ≤ e−

x
2

2 we obtain

Pb ≤ e
− Eb

N0 .

The novelty of this chapter was to have an encoder in front of the bit-by-bit on a pulse
train. The encoder trades Pb for Rb . The new parameters are:

Rb =
Rs

2
=

1

2Ts

Eb =
Es
r

= 2Es

Pb ≤
z5

(1 − 2z)2
where z = e

− Eb

2N0 .

where r is the dimensionless rate of the encoder in bits
symbol

(r = 1
2

in our example).
It should be emphasized that source symbols are called bits since they carry one bit of
information each. The notion of bits as a unit of information will be introduced to you
in the Information Theory class (7th semester). For now it suffices to say that a binary
random variable carries one bit of information iff it is uniformly distributed, and each
symbol of a sequence of binary random variables carries one bit of information if, in
addition, the symbols are i.i.d.

For a fixed encoder output rate, the power spectral density of the transmitted signal
is the same as that of an uncoded system with the same symbol rate (see Homework).
However, the encoder output has a symbol rate which is twice that of the encoder input

136 Chapter 6.

rate. Hence, in effect, we are occupying twice as much bandwidth. We have reduced
the bit-error probability but we have increased the bandwidth by a factor two. With
more powerful codes we can further decrease the bit error probability without further
expanding the bandwidth. As already mentioned in the previous chapter, there is a
fundamental limit, studied in information theory (seen next semester) that says that we
can make the error probability arbitrarily small as long as the bit rate is smaller than a
computable number called channel capacity. For the AWGN channel with bandwidth B ,

the channel capacity is B log2

(

1 + P
BN0

)

[bits/sec], where P is the transmitted power.

The probability of error may be made arbitrarily small by a clever choice of signaling
method. In fact, across a bandlimited channel, one may always transmit signals of the
form

si(t) =
∑

j

sijψ(t− jT)

where ψ(t) = 1√
T
sinc(t

T
) . This follows from the sampling theorem. In general, however,

the sij is not constrained to be of the form {±√
Es} . Like in the example of this chapter,

the signal space points used to make the probability of error arbitrary small are obtained
from an encoder.

As already mentioned, the encoder is just meant to form appropriate signal points in
n dimensions, where n is typically large. Intuitively speaking, here is what a large n
buys us. Let us start first from the opposite situation and let us assume that we are
operating in one dimension like in pulse amplitude modulation (PAM). Independently of
the transmitted point s , the received point y = s + Z , can be anywhere in R (certain
regions are more likely than other and if we choose the decoding region according to the
MAP rule then we minimize the error probability, but there is a limit to how small we can
make the probability of error). If we move to n dimensions, then we send some s ∈ R

n

and receive y = s + Z , where Z ∼ N (0, Inσ
2) . By the law of large numbers,

√

1
n

∑

z2
i

goes to σ as n goes to infinity. This means that with probability going to 1 , Y will be
in a thin shell of radios

√
nσ around s . Intuitively, the key here is that in n dimensional

space there are points in R
n that are “off limit” for Y = s+Z . This was not the case for

the corresponding one-dimensional problem. By choosing the signal points cleverly, there
is a hope that we can find a large number of such points that can be distinguished from
one another with hight probability even after they have been sent through the channel.

6.6 Problems

Problem 1. (Power Spectral Density of the convolutional code that was considered in
class.)

Block-orthogonal signaling may be the simplest coding method that achieves Pr{e} → 0
as N → ∞ for a non-zero data rate. However, we have seen in class that the price to
pay is that block-orthogonal signaling requires infinite bandwidth to make Pr{e} → 0 .

6.6. Problems 137

This may be a small problem for one space explorer communicating to another; however,
for terrestrial applications, there are always constraints on the bandwidth consumption.
Therefore, in the examination of any coding method, an important issue is to compute
its bandwidth consumption. Compute the bandwidth occupied by the rate−1/2 convo-
lutional code studied in this chapter. The signal that is put onto the channel is given
by

X(t) =
∞
∑

i=−∞
Xi

√

Esψ(t− iTs), (6.6)

where ψ(t) is some unit-energy function of duration Ts and we assume that the trellis
extends to infinity on both ends, but as usual we actually assume that the signal is the
wide-sense stationary signal

X̃(t) =
∞
∑

i=−∞
Xi

√

Esψ(t− iTs − T0), (6.7)

where T0 is a random delay which is uniformly distributed over the interval [0, Ts) .

(i) Find the expectation E[XiXj] for i = j , for (i, j) = (2n, 2n + 1) and for (i, j) =
(2n, 2n+ 2) for the convolutional code that was studied in class. Then give the autocor-
relation function RX [i− j] = E[XiXj] for all i and j . Hint: Consider the infinite trellis
of the code. Recall that the convolution code studied in the class can be defined as

X2n = DnDn−2

X2n+1 = DnDn−1Dn−2

(ii) Find the autocorrelation function of the signal X̃(t) , that is

RX̃(τ) = E[X̃(t)X̃(t+ τ)] (6.8)

in terms of RX [k] and Rψ(τ) = 1
Ts

∫ Ts

0
ψ(t+ τ)ψ(t)dt .

(iii) Give the expression of power spectral density of the signal X̃(t) .

(iv) Find and plot the power spectral density that results when ψ(t) is a rectangular
pulse of width Ts centered at 0 .

Problem 2. For the convolutional encoder shown below on the left, fill in the section of
the trellis shown below on the right, that is, find the correct arrows and label them with
the corresponding output value pairs (x2n, x2n+1) . The input sequence dn takes values
in {±1} .

138 Chapter 6.

Dn Dn−1 Dn−2

s s

- x2n+1

- x2n

1, 1 s s

−1, 1 s s

1,−1 s s

−1,−1 s s
State

Problem 3. Consider the convolutional code described by the trellis section below on the
left. You may assume that each of the encoder output symbols (x2n, x2n+1) , are mapped
into orthogonal waveforms, φ1(t) if xi = +1 and φ2(t) if xi = −1 . The waveforms
are of equal energy Es . At the receiver we perform matched filtering with the filters
matched to φ1(t) and φ2(t) . Suppose the output of the matched filter at time n are
(y2n, y2n+1) = (1,−2) . Find the branch metric values to be used by the Viterbi algorithm
and enter them into the trellis section on the right.

STATESTATE

−1,−1

1,−1

−1, 1

1, 1

−1,−1

1,−1

−1, 1

1, 1 1, 1

1, 1

1,−1

1,−1

−1,−1
−1,−1

−1, 1−1, 1

Problem 4. In the trellis below, the received sequence has already been preprocessed.
The labels on the edges of the trellis are the branch metric values. Find the maximum
likelihood path.

STATE

−1

1 −23

−3

−1

2

1

−1

1

−2

−2

2

2

5

2

3

−3

6.6. Problems 139

Problem 5. (Intersymbol Interference)

An information sequence U = (U1, U2, . . . , U5) , Ui ∈ {0, 1} is transmitted over a noisy
intersymbol interference channel. The i th channel output is

lsYi = Si + Zi,

where the noise Zi forms an independent and identically distributed (i.i.d.) sequence of
Gaussian random variables,

Si =
∞
∑

j=0

Ui−jhj, i = 1, 2, . . .

and the channel impulse response is given by

hi =

1, i = 0
−2, i = 1
0, otherwise.

You may assume that Ui = 0 for i ≥ 6 and i ≤ 0 .

(a) Rewrite Si in a form that explicitly shows which information symbols are relevant for
the i th output.

(b) Sketch a trellis representation of a finite state machine that produces the output
sequence S = (S1, S2, . . . , S6) from the input sequence U = (U1, U2, . . . , U5) . Label each
trellis transition with the specific value of Ui|Si .
(c) Specify a metric f(s, y) =

∑6
i=1 f(si, yi) whose minimization or maximization with

respect to s leads to a maximum likelihood decision on S . Specify if your metric needs
to be minimized or maximized. Hint: Think of a vector channel Y = S + Z , where
Z = (Z1, . . . , Z6) is a sequence of i.i.d. components with Zi ∼ N (0, σ2) .

(d) Assume Y = (Y1, Y2, · · · , Y5, Y6) = (2, 0,−1, 1, 0,−1) . Find the maximum likelihood
estimate of the information sequence U . Please: Do not write into the trellis that you
have drawn in Part (b); work on a copy of that trellis.

Problem 6. (Linear Transformations.)

(i)(a) First review the notion of a field. (See e.g. K. Hoffman and R. Kunze, Linear
Algebra, Prentice Hall or your favorite linear algebra book.)

Now consider the set F = {0, 1} with the following addition and multiplication tables:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

140 Chapter 6.

Dn Dn−1 Dn−2

s s

- x3n

- x3n+1

- x3n+2

Figure 6.3: Convolutional encoder. x3n = dndn−2 ; x3n+1 = dn−1dn−2 ;

x3n+2 = dndn−1dn−2 .

Does F , “+”, and “×” form a field?

(i)(b) Repeat using F = {±1} and the following addition and multiplication tables:

+ 1 −1
1 1 −1

−1 −1 1

× 1 −1
1 1 1

−1 1 −1

(ii)(a) Now first review the notion of a vector space.

Let F , + and × be as defined in (i)(a). Let V = F∞ . (The latter is the set of infinite
sequences with components in F . Does V , F , + and × form a vector space?

(ii)(b) Repeat using F , + and × as in (i)(b).

(iii)(a) Review the concept of linear transformation from a vector space I to a vector
space O . Now let f : I → O be the mapping implemented by the encoder described in
this chapter. Specifically, let x = f(d) be specified by

x2j−1 = dj−1 ⊕ dj−2 ⊕ dj−3

x2j = dj ⊕ dj−2.

Is this encoder linear?

Problem 7. (Rate−1/3 Convolutional Code.)

Consider the following convolutional code, to be used for the transmission of a data
sequence di ∈ {−1, 1} :

(i) Draw the state diagram for this encoder.

6.6. Problems 141

(ii) Suppose that this code is decoded using the Viterbi algorithm. Draw the detour
flowgraph.

(iii) This encoder/decoder is used on an AWGN channel. The energy available per source
digit is Eb and the power spectral density of the noise is N0/2 . Give an upper bound on
the bit error probability Pb as a function of Eb/N0 .

Problem 8. (Convolutional Code.)

The following equations define a convolutional code for a data sequence di ∈ {−1, 1} :

x3n = d2n · d2n−1 · d2n−2 (6.9)

x3n+1 = d2n+1 · d2n−2 (6.10)

x3n+2 = d2n+1 · d2n · d2n−2 (6.11)

(i) Draw an implementation of the encoder of this convolutional code, using only delay
elements D and multipliers. Hint: Split the data sequence d into two sequences, one
containing only the even-indexed samples, the other containing only the odd-indexed
samples.

(ii) What is the rate of this convolutional code?

(iii) Draw the state diagram for this convolutional encoder.

(iv) Does the formula for the upper bound on Pb that was derived in class still hold? If
not, make the appropriate changes.

(v) (optional) Now suppose that the code is used on an AWGN channel. The energy
available per source digit is Eb and the power spectral density of the noise is N0/2 . Give
the detour flowgraph, and derive an upper bound on the bit error probability Pb as a
function of Eb/N0 .

142 Chapter 6.

