
Chapter 5

Communication Across Lowpass AWGN
channels

5.1 Introduction

The previous chapters dealt with any communication system for the continuous-time
additive white Gaussian noise channel.

In most situations of practical interest, there is a fairly strict bandwidth constraint on
the transmitted signals. This is the case, for instance, if we communicate through the
telephone line. Since the telephone line was designed to carry voice, there are filters that
essentially block all frequency components above 4 KHz1.

In this Chapter, we assume that the transmitted signal has to be a low-pass signal, i.e.,
a signals s(t) such that sF(f) vanishes for f ≥ B for some bandwidth B . The more
general bandpass case where sF(f) has to vanish for |f | "∈ [f0− B

2 , f0+ B
2 ] for some center

frequency f0 and bandwidth B is an extension that can be dealt with by means of an
additional level of signal processing2. This additional signal processing is represented by
the top block of Figure 1.2 and dealt with in details in the next chapter.

For the sake of designing a communication system, it does not matter whether the band-
width constraint comes from the channel, like for the telephone line, or from frequency
regulations (this would be the case in wireless communication). To remind ourselves about
the presence of the bandwidth constraint, we insert a filter in our channel model as shown
in Figure 5.1.

For now we assume that h(t) is the channel impulse response of an ideal lowpass filter,

1The signal of a phone modem goes through such a filters. The filter can be bypassed and this is done
if you request to install an ADSL modem.

2Wireless communication requires that we know how to handle the bandpass case. See e.g.
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html and click on “FM radio” for the spectrum used
by FM radio stations or click on “electromagnetic spectrum” for a broader perspective
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Figure 5.1: Lowpass channel model.

i.e.,

hF(f) =

{
1, |f | ≤ B

0, otherwise.

Fortunately, the presence of a filter in the channel model does not change or general
approach. We have used the fundamental fact that the normed space spanned by the
signaling waveforms used at the transmitter may be be represented by n -tuples. This
has allowed us to define an interface (represented by the middle layer in Figure 1.2), that
transforms a continuous-time AWGN channel into the n -tuple channel studied in Chapter
2.

The same approach will work here, but instead of fixing the signaling waveforms and
finding a basis for the space that they span, we start with a basis that spans the subspace
of L2 that fulfills the bandwidth constraint.

We will see that the sampling theorem is just a special kind of orthonormal expansion
and that the basis it uses is the one that we need (at least in principle). Luckily, the
orthonormal basis used in the sampling theorem has the convenient form ψj(t) = ψ(t−jT )
assumed in the previous chapter. Recall that we like this form since it allows us to obtain
the projection yj = 〈R(t), ψj(t)〉 by means of a single filter. Namely, yj = 〈R(t), ψ(t−jT )〉
is output at time jT of the filter with input R(t) and impulse response ψ∗(−t) . In this
chapter, we will also derive the frequency-domain characterization of all orthonormal bases
that have the convenient form ψj(t) = ψ(t− jT ) and use this result to pick orthonormal
bases that are more practical than the ψ(t) = sinc(t/T ) used in the sampling theorem.

5.2 Using The Sampling Theorem

Theorem 45. (Sampling Theorem)3 Let s(t) be a function in L2 that is lowpass limited
to B . Then s(t) is specified by its values at a sequence of points spaced T = 1

2B apart.
In particular

s(t) =
∞∑

n=−∞
s(nT ) sinc(

t

T
− n) (5.1)

3See the Appendix for a proof of the sampling Theorem.
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where sinc(t) = sin(πt)
πt . !

The sinc pulse does not have unit energy. Hence we define (its normalized version)
ψ(t) = 1√

T
sinc ( t

T ) . The set {ψ(t − jT )}∞j=−∞ forms an orthonormal set. Hence (5.1)
can be rewritten as

s(t) =
∞∑

j=−∞

sjψ(t− iT ), ψ(t) =
1√
T

sinc (
t

T
) (5.2)

where si = s(nT )
√

T . This highlights the way the sampling theorem should be seen,
namely as a particular instance of an orthonormal expansion. In this expansion the basis
is formed by time translates of sinc pulses. Implicit in the sampling theorem is that the
set {ψ(t − iT )}∞i=−∞ is a complete orthonormal basis for the set of waveforms that are
lowpass limited to B = 1

2T .

Now let us go back to our communication problem. The channel filter is a lowpass.
Hence, any component of the transmitted signal s(t) that lies outside the frequency
range [−B, B] will not be visible to the receiver; we may as well limit ourselves to signals
that vanish at frequencies larger than B . All such signals have the form (5.2). Hence,
without loss of generality, we may decide to transmit only signals of the form (5.2). For
these signals the filter is transparent, which implies that the optimal receiver derived so
far for the AWGN channel (without lowpass filter) is also optimal for the lowpass channel
at hand.

Figure 5.2 shows the system from the encoder output (or from the source output if there
is no encoder) to the receiver front end. If there is an encoder, the outputs of the receiver
front end can be passed to a Viterbi algorithm to find the ML sequence estimate in an
efficient way as described in the previous chapter. If there is no encoder, i.e., we are doing
symbol-by-symbol on a pulse train possibly without restricting the alphabet of sj to be
binary, a ML decoder may decide on a symbol by symbol basis (i.e. it decides about sj

by looking at Yj only).

!

sj

ψ(t) ! h(t) !!"#$
! ψ(−t) ##

s(t) =
∑

sjψ(t− jT )
R(t) Yj = 〈R,ψj〉

jT

N(t)

"

Figure 5.2: Lowpass system.
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The details of what we may call the vector channel are shown in Figure 5.2. From
the input/output point of view an equivalent channel model is the discrete-time AWGN
channel shown in the next figure.

sj !!"#$
! Yj = sj + Zj

"

Z

i.i.d. ∼ N (0, N0
2 )

Figure 5.3: Equivalent discrete time channel.

This is the time to remind ourselves that the (vector) AWGN channel considered in Pass
I was indeed fundamental.

Using the sinc function to modulate data has problems in practice. The most serious
problem is that the sinc function drops off very slowly in time. One consequence of this
is that a small error is the sampling time at the output of the matched filter results in
serious intersymbol interference.

For a fixed bandwidth B , the sinc function allows us to send one symbol every T seconds
through the equivalent discrete-time channel of Figure5.2. In the next section we will see
that, if we are willing to use the equivalent discrete-time channel at a slightly lower rate,
then a number of more practical solutions become available.

5.3 Using Nyquist Pulses

In the previous section we have constructed our orthonormal basis via ψ(t) = 1√
T

sinc ( t
T ) .

We wonder if there are other functions ψ(t) that can be used instead of the sinc. We are
looking for functions ψ(t) with the property

∫ ∞

−∞
ψ(t− nT )ψ∗(t)dt = δn. (5.3)

Another example of such a function is ψ(t) = 1[0,T ](t) , but this function is not bandlimited.
Our aim is to find an insightful frequency-domain equivalent of (5.3). We now derive such
a characterization which is known as Nyquist criterion. First define the following periodic
function of period 1

T

g(f) =
∑

k∈N
ψF(f +

k

T
)ψ∗F(f +

k

T
).
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We can now transform (5.3) as follows:

δn =

∫ ∞

−∞
ψ(t− nT )ψ∗F(t)dt

(a)
=

∫ ∞

−∞
ψF(f)ψ∗F(f)e−j2πnTfdf

(b)
=

∫ 1
2T

− 1
2T

g(f)e−j2πnTfdf, (5.4)

where in (a) we used Parseval’s relationship and the shift property of the Fourier trans-
form, and in (b) we made repeated use of the fact that for an arbitrary function u(x) and
an arbitrary interval [−a

2 + ia, a
2 + ia] in the domain of u ,

∫ a
2 +ia

−a
2 +ia

u(x)dx =

∫ a
2

−a
2

u(x + ia)dx.

But (5.4) is 2B (or equivalently 1
T ) times the n -th Fourier series coefficient of g(f) .

Hence f(f) is a periodic function with vanishing Fourier coefficients except for the coef-
ficient with n = 0. This means that the function g(f) must be constant. Specifically,
g(f) ≡ T, f ∈ [− 1

2T , 1
2T ] .

We have proved the following

Theorem 46. (Nyquist). A waveform ψ(t) is orthonormal to each shift ψ(t − nT ) if
and only if

∞∑

k=−∞

|ψF(f +
k

T
)|2 = T for f ∈ [− 1

2T
,

1

2T
] (5.5)

!

A few comments are in order:

• The sinc pulse is just a special case of a Nyquist pulse. It has the smallest possible
bandwidth, namely 1/2T [Hz], among all pulses that satisfy Nyquist criterion for a
given T . (Draw a picture if this is not clear to you).

• Normally we are interested in Nyquist pulses that have small bandwidth, typically
between 1/2T and 1/T . For pulses that are strictly bandlimited to 1/T or less, the
Nyquist criterion is satisfied if and only if |ψF |2( 1

2T − ε) + |ψF |2(− 1
2T − ε) = T for

ε ∈ [ 1
2T , 1

2T ] (See picture below). If we assume (as we do) that ψ(t) is real-valued,
then |ψF |2(−f) = |ψF |2(f) . In this case the above relationship is equivalent to

|ψF |2(
1

2T
− ε) + |ψF |2(

1

2T
+ ε) = T, ε ∈ [0,

1

2T
].

This means that |ψF |2( 1
2T ) = T

2 and the amount by which |ψF |2(f) increases when
we go from f = 1

2T to f = 1
2T − ε equals the decrease when we go from f = 1

2T to
f = 1

2T + ε .
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and 

1
T

f

T
|ψF |2( 1

2T − ε) + |ψF |2(− 1
2T − ε) = T

|ψF |2(f) |ψF |2(f − 1
T )

1
2T

• Even though the Nyquist criterion is (5.5), to see if a pulse ψ(t) fulfills Nyquist
criterion we can either check if the pulse fulfills (5.3) or, alternatively, check if its
Fourier transform ψF(t) fulfills (5.5). More often than not we are interested in
pulses that are bandlimited. In those cases it is often easier to do the Fourier-domain
check (5.5). However, if you are given a rectangular time-domain pulse, the obvious
thing to do is to see whether or not it passes the time-domain test (5.3).

• If we use a Nyquist pulse ψ(t) to generate

s(t) =
∞∑

i=−∞

siψ(t− iT )

Then the system depicted in Figure 5.2 is optimal.

• Verify that any pulse ψ(t) such that

|ψF |2(f) =

{
T (1− T |f |), |f | ≤ 1

T

0, otherwise

fulfills Nyquist criterion.

• Verify that any pulse ψ(t) that satisfies

|ψF |2(f) =






T, |f | ≤ 1−α
2T

T
2

(
1 + cos

[
πT
α

(
|f | − 1−α

2T

)])
, 1−α

2T < |f | < 1+α
2T

0, otherwise

for some α ∈ (0, 1) , fulfills Nyquist criterion. Such a pulse is called a root-raised-
cosine pulse. (Draw a picture).

5.4 Appendix: Fourier Series and Sampling Theorem

We briefly review the Fourier series focusing on the big picture and on how to remember
things.
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Let f(x) be a periodic function, x ∈ R . It has period p if f(x) = f(x+p) for all X ∈ R .
Its fundamental period is the smallest such p . We are using the “physically unbiased”
variable x instead of t (which usually represents time) since we want to emphasize that
we are dealing with a general periodic function, not necessarily a function of time.

The periodic function f(x) can be represented as a linear combination of complex expo-
nentials of the form ej2π x

p i . These are all the complex exponentials that have period p .
Hence

f(x) =
∑

i∈Z
Ai e

j2π x
p i

for some sequence of coefficients . . . A−1, A0, A1, . . . Hence a function of fundamental
period p may be written as a linear combination of all the complex exponentials of
period p . This may be easily remembered.

The expression for Ai can also be easily remembered (derived). Two functions of fun-
damental period p are identical iff they coincide over a period. Hence it is sufficient to
show that

f(x)1[− p
2 , P

2 ](x) =
∑

i∈Z

√
pAi

ej 2π
p xi

√
p

1[− p
2 , P

2 ](x).

Since φi(x) = e
j 2π

p xi

√
p 1[− p

2 , P
2 ](x), i ∈ Z , is an orthonormal basis, the right side of the alone

expression is one orthonormal expansion of the left. The coefficients of an orthonormal
expansion are always found in the same way, namely

√
pAi = 〈f, φ〉.

Hence

Ai =
1

p

∫ p
2

− p
2

f(x)e−j 2π
p xidx

We hope that this will make it easier for you to remember (or re-derive) the formulas
relating a periodic function and its Fourier series coefficients.

As an example of the utility of this relationship we derive the sampling theorem. Recall
that the sampling theorem states that any L2 function s(t) which is bandlimited to B
may be written as

s(t) =
∑

k

s(kT ) sinc

(
t− nT

T

)

where T = 1
2B .

Proof of the sampling theorem: By assumption, sF(f) = 0 , f /∈ [−B, B] . Hence,

sF =
∑

k

Aie
+j 2π

2B fk1[−B,B](f).

Taking to Fourier transform on both sides, using

s[−B,B](f) ⇔ 1

T
sinc(

t

T
), T =

1

2B
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and the time shifting property

h(t− τ) ⇔ hF(f)e−j2πfτ

we obtain

s(t) =
∑ Ak

T
sinc

(
t + kT

T

)
.

We still need to determine Ak
T . It is straightforward to determine Al from its definition,

but it is easier to observe that if we plug in t = nT on both sides of the expression above
we obtain s(nT ) = A−n

T . This completes the proof. Since it is straightforward, we also
determine Al from the definition:

Al =
1

2B

∫ B

−B

sF(f)e−j 2π
2B lfdf =

1

2B

∫ ∞

−∞
sF(f)e−j 2π

2B lfdf = Ts(−lT ),

where the first equality is the definition of the Fourier coefficient Al , the second uses
the fact that sF(f) = 0 for f /∈ [−B, B] , and the third is the inverse Fourier transform
evaluated at t = −lT . !

5.5 Problems

Problem 1. Consider the transmitted signal, S(t) =
∑

i Xiψ(t− iT ) , where Xi ∈ {±1}
are i.i.d random variables and {ψ(t − iT )}∞i=−∞ forms an orthonormal set. Let Y (t) be
the matched filter output at the receiver. Then in the absence of noise, Xi ’s are the
samples of Y (t) , sampled at integer multiples of T i.e Y (iT ) = Xi . In this MATLAB
exercise we will try to see how crucial it is to sample at t = iT as opposed to t = iT + ε .
Towards that goal we plot the so-called eye diagram.

An eye diagram is the plot of Y (t + iT ) versus t ∈ [−T
2 , T

2 ] , plotted on top of each other
for each i = 0 · · ·K − 1 , where K is the number of transmitted symbols. Thus at t = 0
on the eye diagram lies our sampling points mentioned earlier.
(a) Assuming K = 100 , T = 1 and 10 samples per time period T , plot the eye diagrams
when,

(i) ψ(t) is a raised cosine with α = 1 .

(ii) ψ(t) is a raised cosine with α = 1
2 .

(iii)ψ(t) is a raised cosine with α = 0 (or sinc ).
(b) From the plotted eye diagrams what can you say about the cruciality of the sampling
points with respect to α .

Problem 2. (Nyquist Pulses.)

(i) Consider the following |θF(f)|2 . The unit on the frequency axis is 1/T and the unit
on the vertical axis is T . Which ones correspond to Nyquist pulses θ(t) for symbol rate
1/T ? Note: Figure (d) shows a sinc 2 function.
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(ii) Design a (non-trivial) Nyquist pulse yourself.

(iii) Sketch the block diagram of a binary communication system that employs Nyquist
pulses. Write out the formula for the signal after the matched filter. Explain the advan-
tages of using Nyquist pulses.

Problem 3. (Nyquist Pulses.)

Consider a pulse p(t) defined via its Fourier transform pF(f) as follows:

1

f [Hz]
f0 + B

2−f0 + B
2−f0 − B

2 f0 − B
2

pF(f)
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(a) What is the expression for p(t)? (If you can’t determine a mathematical expression,
you may draw p(t) qualitatively).

(b) Determine the constant c so that ψ(t) = cp(t) has unit energy.

(c) Assume that f0 − B
2 = B and consider the infinite set of functions · · · , ψ(t + T ) ,

ψ(t) , ψ(t−T ) , ψ(t−2T ) , · · · . Do they form an orthonormal set for T = 1
2B ? (Explain).

(d) Determine all possible values of f0 − B
2 so that · · · , ψ(t + T ) , ψ(t) , ψ(t − T ) ,

ψ(t− 2T ) , · · · forms an orthonormal set.

Problem 4. (Bandpass Sampling)

Consider the signal s(t) whose Fourier transform S(f) has the property that |S(f)| = 0
for |f | ≤ 12Hz and for |f | ≥ 18Hz, as illustrated in the following figure:

f [Hz]
1812

|S(f)|

−18 −12

For the following sampling frequencies fs , indicate (with yes or no) whether or not the
signal s(t) can be reconstructed from its samples taken every Ts = 1

fs
seconds apart.

(i) fs = 10Hz

(ii) fs = 12Hz

(iii) fs = 14Hz

(iv) fs = 16Hz

(v) fs = 18Hz

Communications Across Bandpass AWGN Channels

In the last part of this course we consider communication across bandpass AWGN chan-
nels. The block diagram of a general channel model is shown in Fig. 5.4. It looks much as
the lowpass channel model considered in the previous chapter, but the filter’s frequency
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response is now that of an ideal bandpass filter, i.e.,

hF(f) =

{
1, ||f | − f0| ≤ B

0, otherwise.

As before N(t) is white Gaussian noise of power spectral density N0
2 .

! h(t) !!"#$
!

"

N(t)

Figure 5.4: Bandpass AWGN Channel

There are various reasons for being interested in knowing how to communicate across a
bandpass AWGN channel. Some of them are rooted into physics and some are dictated
by practical choices. Among the former we mention that in wireless communications
the channel seen between the transmit and the receiver antenna is always a bandpass
channel (low frequency components do not generate electromagnetic waves capable of
traveling long distances with small attenuation). The usable bandwidth of this channel
is typically quite large however (it depends on the antennas among other things). More
severe restrictions are dictated by international agreements that specify which portion of
the electromagnetic spectrum can be used for what.

Regardless whether we have decided to use the better portion of the bandpass determined
by physical constraints, or because we are complying with international regulations, what
we “see” is often a bandpass channel as the one in Fig. 5.4.

If f0 and B are in a certain relationship (can you tell which? . . . try with a picture), then
ψ(t) = h(t)/ ‖ h ‖ fulfills Nyquist criterion. (In the derivation of Nyquist criterion there
is nothing that requires the pulse to be low-pass). In this case we can proceed exactly as
in the previous chapter using this ψ(t) as the basic pulse.

Now we proceed to derive an alternative (more general) approach that works regardless
of the center frequency f0 and bandwidth B .

The idea is to do some processing at the channel input (actually implemented at the
transmitter back-end) and at the channel output (implemented at the receiver front-end)
in such a way that the new channel becomes a lowpass channel. The big picture is again
that of Fig. 1.2.


