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Appendix 3.A Rectangle and Sinc as Fourier Transform Pairs

The Fourier transform of a rectangular pulses is a sinc pulse. Often one has to go back
and forth between such Fourier pairs. The purpose of this appendix is to make it easier
to �gure out the details.

First of all let us recall that a function g and its Fourier transform gF are related by

g(u) =

Z
gF(�) exp(j2�u�)d�

gF(v) =
Z
g(�) exp(�j2�v�)d�:

Notice that gF(0) is the area under g and g(0) is the area under gF .

Next let us recall that sinc(x) = sin(�x)
�x

is the function that equals 1 at x = 0 and equals
0 at all other integer values of x . Hence if a; b 2 R are arbitrary constants, asinc(bx)
equals a at x = 0 and and equals 0 at nonzero multiples of 1=b .

If you could remember that the area under asinc(bx) is a=b then, from the two facts
above, you could conclude that its Fourier transform, which you know is a rectangle, has
hight equals a=b and area a . Hence the width of this rectangle must be b .

It is actually easy to remember that the area under asinc(bx) is a=b : it is the area of
the triangle described by the main lobe of asinc(bx) , namely the area of the triangle with
coordinates (�1=b; 0) , (0; a) , (1=b; 0) .

Appendix 3.B White Gaussian Noise

We assume that you are familiar with the concept of White Gaussian Noise. The purpose
of this appendix is just to write down what you absolutely need to remember, for the
purpose of this Chapter, about White Gaussian Noise.

If N(t) is White Gaussian Noise of double-sided spectral density N0

2
then:

� Its covariance function is

KN(�)
4
=
N0

2
�(�); 8�:

� Its spectrum (the Fourier transform of the covariance function) is

SN(f) =
N0

2
:

� If

Zi =

Z 1

�1
N(t)gi(t)dt; i = 1; : : : ; K;
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then (Z1; : : : ; ZN) is a zero-mean Gaussian random vector and for any 1 � i , j � K ,

E[ZiZj] = E

�Z 1

�1
N(t)gi(t)

Z 1

�1
N(�)gi(�)d�

�
=

Z 1

�1

Z 1

�1
E[N(t)N(�)]gi(Hgj(�)dt�

=

Z 1

�1

Z 1

�1

N0

2
�(t� �)gi(t)gj(s)dtd�

=

Z 1

�1

N0

2
gi(t)gj(t)dt

In particular, if g1(t); : : : ; gk(t) are an orthonormal set then Z1; : : : ; ZK are iid N (0; N0

2
) .
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Signal Design Trade-O�s

4.1 Introduction

It is time to shift our focus to the transmitter and take a look at some of the options we
have in terms of choosing the signal constellation. The goal is to build up some intuition
about the impact that those options have on fundamental performance measures such as
transmission rate, bandwidth, power, and error probability. Throughout this section we
assume that the channel is the AWGN channel and that the receiver implements a ML
decision rule.

To put things into perspective, we mention from the outset that the problem of choosing a
convenient signal constellation is not as clean-cut as the receiver design problem that has
kept us busy until now. The reason is that the receiver design problem has a clear objec-
tive, namely to minimize the error probability, and an essentially unique solution, a MAP
decision rule. In contrast, choosing a good signal constellation is making a tradeo� among
con
icting objectives. For instance, if we could, we would choose a signal constellation
that contains a very large number m of signals of very small duration T and very small
bandwidth B . If we could choose these parameters at will, we could also achieve any
desired rate log2m

TB
(expressed in bits per second per Hz). In addition, we would choose

our signals so that they use very little energy and result in a very small error probability.
These are con
icting goals.

Besides the quantities already mentioned, other quantities that will come up in our dis-
cussion are the number k = log2m of bits associated to each signal, the average time
Tb = T=k it takes to transmit one bit, the dimensionality n of the signal space, the energy
per bit Eb , the block error probability Pe and the bit error probability Pb .

91



92 Chapter 4.

4.2 Transformations That Do Not A�ect Pe

Two sets of waveforms can look very di�erent yet lead to the same probability of error.
In this section we take a look at some of the transformations that change the signal
constellation without a�ecting the error probability. There are at least two obvious reasons
why we may want to evoke such a transformation: (i) we may save ourselves some time
if we recognize that the probability of error associated to the constellation we are using
is the same as that of another constellation for which we have already determined the
error probability or for which we know an easy way to determine it; (ii) given a signal
constellation that has the desired probability of error, we may be able to transform it into
one that has the same probability of error and uses less energy, or less bandwidth, or less
time.

4.2.1 Isometric Transformations In R
n

An isometry in Rn is a distance-preserving transformation a : Rn ! Rn . Hence for any
two points p; q 2 Rn , the distance from p to q equals the distance from a(p) to a(q) .

If we apply the same isometry to every point of a signal constellation and to every decoding
region, the probability of error (for the AWGN channel) remains the same. This intuitive
fact can be veri�ed mathematically as follows. Let

g(
) =
1

(2��2)n=2
exp

�
� 
2

2�2

�
; 
 2 R

so that for Z � N (0; �2In) we can write fZ(z) = g(kzk2) . Then for any isometry
a : Rn ! Rn we have

Pc(i) = PrfY 2 RijS = sig
=

Z
y2Ri

g(ky � sik)dy
(a)
=

Z
y2Ri

g(ka(y)� a(si)k)dy
(b)
=

Z
a(y)2a(Ri)

g(ka(y)� a(si)k)dy
(c)
=

Z
�2a(Ri)

g(k�� a(si)k)d� = PrfY 2 a(Ri)jS = a(si)g;

where in (a) we used the distance preserving property of an isometry, in (b) we used the
fact that y 2 Ri i� a(y) 2 a(Ri) , and in (c) we made the change of variable � = a(y)
and used the fact that the Jacobian of an isometry is �1 . The last line is the probability
of decoding correctly when the transmitter sends a(si) and the corresponding decoding
region is a(Ri) .
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Example 39. The composition of a translation and a rotation is an isometry. The �gure
below shows an original signal set and a translated and rotated copy. Both have the same
probability of error but not the same energy.
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Given fs0; s1; : : : ; sm�1g , we are interested in �nding the translating vector a so that the
average energy of fs00; s01; : : : ; s0m�1g , where s0i = si � a , is minimized. The appropriate
choice of a is (see Problem 1)

a =
X
i

PH(i)si:

From now on we will use E to denote the average energy of the signal constellation at
hand. Sometimes we will use Eb to denote the average energy per bit. Hence for a signal
set fs0; s1; : : : ; sm�1g , where signal si is used with probability PH(i) , we have

E =
X
i

PH(i)ksik2

Eb = E
logm

;

where logm is the number of bits of information that we convey when we communicate
one of m possible choices.

When we make an isometric transformation as de�ned in this subsection, the signal space
in which we are living does not change (the basis is the same). In the next section we
consider isometric transformations that carry the signal space from one subspace of L2

to another.

4.2.2 Changing the Orthonormal Basis

The error probability depends solely on the position of the signals in the signal space.
We may think of constructing various sets of time-domain signals in the following way.
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We �rst choose a signal set in the signal space. From this set we construct a set of time-
domain waveforms by selecting an orthonormal basis. We then construct a second set of
time-domain waveforms by selecting a second orthonormal basis. The procedure may be
repeated inde�nitely. The resulting sets of waveforms may look very di�erent. For instance
one set may be of signals that have �nite support (i.e. they vanish when t is outside a
speci�ed time interval), whereas another set may have in�nite support. Nevertheless the
associated average probability of error is identical for all signal sets obtained as described.
Notice that changing the basis constitutes an isometric transformation in L2 (as opposed
to an isometry in Rn as in the previous section).

Example 40. Let the signals in the signal space be s0 = (
pE ; 0)T and s1 = (0;

pE)T .
This choice completely determines the error probability and the average energy. It does
not say anything, however, about the signals s0(t) and s1(t) , except that they are or-
thogonal to one another. Example 38 shows four possible choices for s0(t) and s1(t) .
(There are in�nitively many other possibilities).

4.3 Time, Bandwidth, and Dimensionality

The bandwidth plays an important role in practice and should be included in our discus-
sion on signal constellations. For now we focus on baseband signals, i.e. signals that have
their spectral components centered around the origin.

One is tempted to de�ne the bandwidth of a baseband signal s(t) to be B if the support
of sF(t) is [�B

2
; B
2
] . This de�nition is not useful in practice since all man-made signals

s(t) have �nite support and thus sF(f) has in�nite support.

A better de�nition (but not the only one that makes sense) is to �x a number � 2 (0; 1)
and say that the baseband signal s(t) has bandwidth B ifZ B

�B
jsF(f)j2df = ksk2(1� �):

In words, the signal has bandwidth B if B is the smallest number such that the interval
(�B;B) contains 100(1� �)% of the signal power. The bandwidth changes if we change
� . Reasonable values for � are � = 0:1 and � = 0:01 .

This de�nition allows us to relate time, bandwidth, and dimensionality. If we let � = 1
12

and de�ne

L2(T;B) =

�
s(t) 2 L2 : s(t) = 0; t 62 [�T

2
;
T

2
] and

Z B

�B
jsF(f)j2df � ksk2(1� �)

�
then one can show that the dimensionality of L2(T;B) is n = b2TB+1c (see Wozencraft
& Jacobs for more on this). As T !1 , n

T
! 2B . Moreover, if one changes the value of

� , then the constant in front of B changes but the essentially linear relationship between
n
T
and B remains.
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4.4 Examples

The aim of this section is to sharpen our intuition by looking at some examples.

Example 41. (Pulse Amplitude Modulation (PAM): Single Shot) Let

si 2
n
�
p
Ew; �3

p
Ew; �5

p
Ew; : : : ;�(m� 1)

p
Ewg i 2 f0; 1; : : : ; (m� 1)

o
; (4.1)

and let si = si (t) , where  is an arbitrary unit-energy waveform. Figure 4.1 shows the
constellation in the signal space for m = 6 .

-
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Figure 4.1: Signal Space Constellation for 6 -ary PAM.
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Figure 4.2: PAM Receiver

Notice that the receiver (shown in Figure 4.2) only needs a single matched �lter since
all the signals are in an inner product space of dimension 1 . As we have seen, the �lter
projects the received signal onto  . Recall that the slicer is the device that �nds (one
of) the i for which y is as close to si as it is to any sj , j 6= i . The slicer needs the
knowledge of the signal space constellation.

Determining the probability of error is straightforward. If i corresponds to one of the two

end points, Pe(i) = Q( d
2�
) , where d

2
=
p
Ew and � =

q
N0

2
. For the remaining m � 2

signal points, the probability of error is twice that of the end pints. Taking the average,
we obtain

Pe =

�
2� 2

m

�
Q

 r
2Ew

N0

!
: (4.2)

Another quantity of interest is the average energy E . A simple approximation to de-
termine the average energy is obtained by computing the second moment of a random
variable X that, instead of being uniformly distributed over the discrete set shown in
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(4.1), is uniformly distributed over the interval [�mpEw;m
p
Ew] . The second moment

of this random variable is

E[X2] =
1

m
p
Ew

Z m
p
Ew

0

s2ds =
m2Ew

3
:

This approximation becomes better as the signal points move closer to one another, which
is the case if we let the number k of bits grow and let Ew scale so as to keep the average
energy per bit equal to some constant Eb . To see this, let E = kEb and use the continuous
approximation to equate E = EX2 = m2Ew

3
. Solving for Ew yields Ew = 3E

m2 = 3kEb
22k

,
which indeed goes to zero exponentially fast as k goes to in�nity. Since the signal points
move closer to one another, the probability of error goes to 1 as k goes to in�nity. 2

The next example uses a two-dimensionsional constellation.

Example 42. (Phase-Shift-Keying (PSK): Single Shot) Let � = [0; T ] and de�ne

si(t) =

r
2E
T

cos(2�f0t+
2�

m
i)1� (t); i = 0; 1; : : : ;m� 1: (4.3)

We assume f0T = k
2
for some integer k , so that ksik2 = E for all i . The signal space

representation may be obtained by using the trigonometric equivalence cos(� + �) =
cos(�) cos(�)� sin(�) sin(�) to rewrite (4.3) as

si(t) = si;1 1(t) + si;2 2(t);

where

si1 =
pE cos �2�i

m

�
,  1(t) =

q
2
T
cos(2�f0t)1� (t),

si2 =
pE sin �2�i

m

�
,  2(t) = �

q
2
T
sin(2�f0t)1� (t).

Hence, the n -tuple representation of the signals is

si =
p
E
�
cos 2�i=m
sin 2�i=m

�
:

In Example 7 we have already studied this constellation and derived the following upper
bound to the error probability

Pe � 2Q

 r
E
�2

sin
�

m

!
;

where �2 = N0

2
is the variance of the noise in each coordinate.

From the decoding regions plotted in Example 7 we also immediately see that for each
0 � i; j � m�1 , there is an isometry a : R2 ! R2 such that a(si) = sj and a(Ri) = Rj .
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Thus, as an application of what we have learned in the previous section, we can tell the
rather obvious fact that Pe(i) is the same for all i 2 H .

As in the previous example we are interested in understanding what happens as k goes
to in�nity while Eb remains constant. Since E = kEb grows linearly with k , the circle
that contains the signal points has radius

pE =
p
kEb that grows with

p
k , while the

number m = 2k of points on this circle grows exponentially with k . Hence the minimum
distance between points goes to zero (indeed exponentially fast). As a consequence, the
argument of the Q function that upperbounds the probability of error for PSK goes to
0 and the probability of error goes to 1 . Recall from Example 7 that the upperbound
becomes tight as m grows. 2

As they are, the signal constellations used in the above two examples are not suitable
to transmit a large amount of data. Indeed, to do so, we would have to let m be large
enough so that log2m is the number of bits we want to transmit. As m grows, the
probability of error goes to 1 . The problem with these two examples is that, as m grows,
we are trying to pack more and more signal points into a space that also grows in size but
does not grow fast enough. The space becomes \crowded" as m grows, meaning that the
minimum distance becomes smaller, and the probability of error increases.

In the next example we try to do better. So far we have not made use of the fact that we
should expect to use more time to transmit more bits. In both of the above examples, the
length T of the time interval used to communicate was constant. In the next example
we let T grow linearly with the number of bits. This will free up a number of dimensions
that grows linearly with k . (Recall that n = 2BT is possible.) Each dimension may
be used with the signal constellation of Example 41. Alternatively, every two dimensions
may be used with the constellation of Example 42.

Example 43. (Bit by Bit on a Pulse Train) The idea is to transmit a signal of the form

si(t) =
kX

j=1

sij j(t): (4.4)

by letting  j(t) be a time-translated version of a basic pulse  (t) . Hence,

si(t) =
X
j

sij (t� jTs) (4.5)

where
sij 2 f�

p
Ebg

h (t� jT );  (t� lT )i = �jl:

To be speci�c, we let
sij = (2dj � 1)

p
Eb
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where dj 2 f0; 1g is j th source bit. The subscript b indicates that Eb is the energy per
(source) bit. For obvious reasons, the above signaling method will be called bit-by-bit on
a pulse train.

There are various possible choices for  (t) . Common choices for  (t) are sinc pulses,
rectangular pulses, and raised-cosine pulses (to be de�ned later).

The signal space representation of si is si = (si1; si2; : : : ; sik)
T 2 f�pEbgk: This is a

vertex of a k -dimensional hypercube as shown in the �gures below for k = 1; 2 .

k = 1 -
0
qs s

s0 s1

�pEb
pEb

 1 k = 2 -  1

6

 2

s s
s2 s3

s s
s1 s0 =

pEb(1; 1)

The ML receiver decides for

ĤML(y) = argmax
i
hy; sii � ksik

2

2
= argmax

i
hy; sii

where we used the fact that ksik2 = kEb , independently of i . The maximum is achieved
with the si for which its j th coordinate has the same sign as yj . (If yj = 0 then it does
not matter whether we consider yj as positive or negative. Either way the probability of
error will be the same.) Thus,

sĤ(y) =
p
Eb(sign(Y1); sign(Y2); : : : ; sign(Yk))T :

This can be implemented as shown in the next �gure. Notice that we need only one
matched �lter to do the n = k projections. This is one of the reasons why we choose
 i(t) =  (t� iTs) .

-
R(t)

 (�t)
t = jT

j = 1; 2; : : : ; k

@@
Yj pEb sign(Yi)

Ŝj
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In the �gure above, Ŝj stands for the j th component of SĤ(y) .

We now compute the error probability. As usual, we �rst do so for a �xed transmitted
signal si = (si1; : : : ; sik)

T . If sij = �pEb , the j th component of si will be decoded
correctly if the j th noise component ful�lls Zj <

pEb . This happens with probability

1 � Q(
pEb
�
) . Similarly, If sij =

pEb , the j th component of si will be decoded correctly

if Zj > �
pEb . This also happens with probability 1�Q(

pEb
�
) . The probability that all

k symbols are decoded correctly is

Pc(i) =

�
1�Q

�pEb
�

��k
:

Since this probability does not depend on si we have that

Pc =

�
1�Q

�pEb
�

��k
:

Notice that Pc ! 0 as k !1 . However, the probability that a speci�c symbol (bit) be

decoded incorrectly is Q(
pEb
�
) . This is constant with respect to k .

The following properties (due to our choice  j(t) =  (t� jT ) ) are worth noticing:

� k may be arbitrary and may vary from one message to the other without changing
the structure of the transmitter and the receiver. (This would not be true with a
general choice of  1; : : : ;  k .)

� The transmitter does not have to wait until it has received all k information bits to
start transmission. This is important in real time applications, e.g. speech, video,
etc.

� A ML receiver decides for each bit independently. Moreover, it can decide bit i as
soon as the signal transmitted in the i th time interval has been received.

All of the above properties are desirable for practical systems. 2

The drawback of bit-by-bit signaling is that Pc ! 0 as k !1 . Hence, as it is, it is not
appropriate to communicate long �les either. We are, however, in a better situation than
with the �rst two examples of this section. In those examples the probability of error was
going to one since signal points were getting closer as k increased. To the contrary, in
bit-by-bit on a pulse train the probability that we make an error in decoding one or more
of the k bits goes to one because the number of neighbors increases. Coding will �x this
problem by ensuring that the distance between neighboring signal points grows enough
to compensate for the growing number of neighbors.

While in the last example we have chosen to transmit a single bit per dimension, we could
have transmitted multiple bits per dimension as done in the previous two examples. In
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that case we call the signaling scheme symbol by symbol on a pulse train. Symbol by
symbol on a pulse train will come up often in the remainder of this course. In fact it is
the basis for most digital communication systems.

The following question seems natural at this point: Is it possible to map k bits into a
signal si and avoid that Pc ! 0 as k ! 1? The next example shows that it is indeed
possible.

Example 44. (Frequency Shift Keying (FSK): An Example Of Orthogonal Signaling) Let
n = m = 2k . We do this by using m equal-norm orthogonal functions s1(t); : : : ; sm(t) :

si =
p
E i; h i;  ji = �ij:

This is called block orthogonal signaling. The name stems from the fact that one collects
a block of k bits and maps them into one of 2k orthogonal waveforms.

There are many ways to choose the 2k waveforms  i . One way is to choose  i(t) =
 (t� iT ) for some basic pulse  (t) such that h (t� iT );  (t� jT )i = �ij as in bit-by-bit
signaling. Notice, however, that now we need 2k such shifts of  as opposed to only
k such shifts. Another way is what is called m -FSK (m -ary frequency shift keying).
Speci�cally,

si(t) =

r
2E
T

cos(2�fit)1� (t) (4.6)

for some � = [0; T ] and i = 1; 2; : : : ;m . (For FSK it is convenient to index this way
rather than letting i = 0; 1; : : : ;m � 1 as usual.) For convenience we assume fiT = ki
for some integer ki such that ki 6= kj if i 6= j . Then

hsi; sji = 2E
T

Z T

0

cos(2�fit) cos(2�fjt)dt

=
2E
T

Z T

0

�
1

2
cos[2�(fi + fj)t] +

1

2
cos[2�(fi � fj)t]

�
dt

=
E
T

Z T

0

cos[2�(fi � fj)t]dt
= E�ij:

Letting  i(t) =
q

2
T
cos 2�fit1� (t) we obtain

si =
p
E i; i = 1; : : : ;m: (4.7)

Hence we have an orthogonal signal set as desired.
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When m � 3 , it is not easy to visualize the decoding regions. However we can proceed
analytically:

ĤMAP (y) = argmax
i
hy; sii � E

2
= argmax

i
hy; sii

= argmax
i
yi:

When H = i ,

Yj =

(
Zj if j 6= i;pE + Zj if j = i:

Then
Pc(i) = PrfY1 > Z2; Y1 > Z3; : : : ; Y1; > ZmjH = 1g:

To evaluate the right side we �rst determine the probability of being correct conditioned
on H = 1 and Y1 = � , where � 2 R is an arbitrary number

PrfcjH = 1; Y1 = �g = Prf� > Z2; : : : ; � > Zmg

=

"
1�Q

 
�p
N0=2

!#m�1

and then remove the conditioning on Y1 obtaining

Pc(1) =

Z 1

�1
fY1jH(�j1)

"
1�Q

 
�p
N0=2

!#m�1

d�

=

Z 1

�1

1p
�N0

e
� (��

p
E)2

N0

"
1�Q

 
�p
N0=2

!#m�1

d�;
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where we used the fact that when H = 1 , Y1 � N (
pE ; N0

2
) . The above expression for

Pc(1) cannot be simpli�ed further. By symmetry,

Pc = Pc(1) = Pc(i)

for all i .

The union of events bound is especially useful when the signal set fs1; : : : ; smg is com-
pletely symmetric, like for orthogonal signals. In this case:

Pe = Pe(i) � (m� 1)Q

�
d

2�

�
= (m� 1)Q

 r E
N0

!

< 2k exp

�
� E
2N0

�
= exp

�
�k
�E=k
2N0
� ln 2

��
;

where we used �2 = N0

2
and d =

p
2E . The latter follows from d = ksi � sjk and

ksi � sjk2 = ksik2 + ksjk2 � 2hsi; sji = ksik2 + ksjk2 = 2E :

Here E is the signal's energy. If we let E = Ebk , meaning that we let the signal's energy
grow linearly with the number of bits as in bit-by-bit signaling, then we obtain

Pe < e
�k( Eb

2N0
�ln 2)

:

Here Pe ! 0 as k !1 , provided that Eb
N0

> 2 ln 2: (2 ln 2 is approximately 1:39 .)

2

A useful application of the energy minimization idea (See Problem 1) applied to an or-
thogonal signal constellation leads to the simplex signal set.
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4.5 Bit By Bit Versus Block Orthogonal

In the last two examples of the previous section we have considered a case in which the
number of dimensions n increased linearly with the number k of bits and one in which
n increased exponentially with k . Let us compare the two.

In bit-by-bit on a pulse train the bandwidth is constant (we have not proved this yet,
but this is consistent with the asymptotic limit 2B = n=T seen in Section 4.3 applied
with T = nTs ), and the time and the energy increased linearly with k . These are all
desirable properties. (We have also seen that the delay at the sender and at the receiver
are small and that we need only one matched �lter to do the projections but we will not
take complexity and delay into this discussion).

The drawback of bit-by-bit on a pulse train was the fact that the probability of error goes
to 1 as k goes to in�nity. The union of events bound is a useful tool to understand what
is going on. Let us use it to bound the probability of error when H = i . The union of
events bound has one term for each alternative j . The dominating terms in the bound
are those that correspond to signals sj that are the closest neighbors to si . There are k
closest neighbors, obtained by changing si in exactly one component, and each of them is
at distance 2

pEb from si (see the �gure below). As k increases, the number of dominant
terms goes up and so does the probability of error.



104 Chapter 4.

-k = 2

6

2
pEb

s s

s s

k = 1 -
0
qs s

2
pEb

Let us now consider block orthogonal signaling. Since the dimensionality of the space it
occupies grows exponentially with k , the expression n = 2BT tells us that either the
time or the bandwidth has to grow exponentially also. This is a signi�cant drawback.
Now let us consider the error probability. Using the bound

Q

0@p2kEb
2
q

N0

2

1A = Q

 r
kEb
N0

!
<

1

2
exp

�
� kEb
2N0

�

we see that the probability that the noise carries a signal closer to a speci�c neighbor goes

down as exp
�
� kEb

2N0

�
. There are 2k � 1 = ek ln 2 � 1 nearest neighbors (all alternative

signals are nearest neighbors). For Eb
2N0

> k ln 2 , the growth in distance dominates the

probability of error behavior. For Eb
2N0

< k ln 2 the number of neighbors dominates.
Finally notice that the bit error probability Pb can not be larger than the block error
probability Pe . Indeed they are the same i� every time that the decoder selects a wrong
message the bit sequence that corresponds to this message has all bits 
ipped with respect
to the bit sequence that corresponds to the correct message.

4.6 Conclusion

We have discussed some of the trade-o�s between the number of transmitted bits, the
duration, the bandwidth, and the energy of the signal we use to transmit those bits,
and the resulting error probability. We have seen that, rather surprisingly, it is possible
to transmit an increasing number k of bits at a �xed energy per bit Eb and make the
probability that even a single bit is decoded incorrectly go to zero as k increases. However,
the scheme we used to prove this has the undesirable property of requiring an exponential
growth of the bandwidth. Ideally we would like to make the probability of error go to
zero with a scheme similar to bit by bit on a pulse train. Is it possible? The answer is yes
and the technique to do so is coding. We will give an example of coding in Chapter 9.

The study of the fundamental relationships between the rate at which we want to commu-
nicate (e.g. in bits per second per Hz), the power of the signal (measured at the receiver),
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and the probability of error that can be achieved is a typical subject of information theory.
For instance, the capacity of the additive white Gaussian noise channel of power spectral
density N0 is

C = B log2

�
1 +

P

NoB

�
[bits=sec];

where B is the bandwidth [Hz] and P is the power (energy per second) [Watts] that
we are allowed to use. One can show that at rates smaller than C one can make the
communication arbitrarily reliable. This is not possible at rates above C .

4.7 Problems

Problem 1. (Minimum-energy Signals.)

Consider a given signal constellation consisting of vectors fs1; s2; : : : ; smg . Let signal si
occur with probability pi . In this problem, we study the in
uence of moving the origin
of the coordinate system of the signal constellation. That is, we study the properties of
the signal constellation fs1 � a; s2 � a; : : : ; sm � ag as a function of a .

(i) Draw a sample signal constellation, and draw its shift by a sample vector a .

(ii) Does the average error probability, Prfeg , depend on the value of a? Explain.

(iii) The average energy per symbol depends on the value of a . For a given signal constel-
lation fs1; s2; : : : ; smg and given signal probabilities pi , prove that the value of a that
minimizes the average energy per symbol is the centroid (the center of gravity) of the
signal constellation, i.e.,

a =
mX
i=1

pisi: (4.8)

Hint: First prove that if X is a real-valued zero-mean random variable and b 2 R , then
E[X2] � E[(X � b)2] with equality i� b = 0 . Then extend your proof to vectors and
consider X = S � E[S] where S = si with probability pi .

Problem 2. (Orthogonal Signal Sets.)

Consider the following situation: A signal set fsj(t)gm�1
j=0 has the property that all signals

have the same energy Es and that they are mutually orthogonal:

hsi; sji = Es�ij: (4.9)

Assume also that all signals are equally likely. The goal is to transform this signal set
into a minimum-energy signal set fs�j(t)gm�1

j=0 . It will prove useful to also introduce the

unit-energy signals �j(t) such that sj(t) =
pEs�j(t) .
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(i) Find the minimum-energy signal set fs�j(t)gm�1
j=0 .

(ii) What is the dimension of spanfs�0(t); : : : ; s�m�1(t)g? For m = 3 , sketch fsj(t)gm�1
j=0

and the corresponding minimum-energy signal set.

(iii) What is the average energy per symbol if fs�j(t)gm�1
j=0 is used? What are the savings

in energy (compared to when fsj(t)gm�1
j=0 is used) as a function of m?

Problem 3. (Antipodal Signaling with Rayleigh Fading.)

Suppose that we use antipodal signaling (i.e s0(t) = �s1(t) ). When the energy per
symbol is Eb and the power spectral density of the additive white Gaussian noise in the
channel is N0=2 , then we know that the average probability of error is

Prfeg = Q

 s
Eb

N0=2

!
: (4.10)

In mobile communications, one of the dominating e�ects is fading. A simple model
of fading is as follows: Let the channel attenuate the signal by a random variable A .
Speci�cally, if si is transmitted, the received signal is Y = Asi + N . The probability
density function of A depends on the particular channel that is to be modeled.1 Suppose
A assumes the value a . From the receiver point of view this is as if there is no fading
and the transmitter uses the signals as0(t) and �as0(t) . Hence,

PrfejA = ag = Q

 s
a2Eb
N0=2

!
: (4.11)

The average probability of error can thus be computed by taking the expectation over the
random variable A , i.e.

Prfeg = EA[PrfejAg] (4.12)

An interesting, yet simple model is to take A to be a Rayleigh random variable, i.e.

fA(a) =

�
2ae�a

2
; if a � 0;

0; otherwise.:
(4.13)

This type of fading, which can be justi�ed especially for wireless communications is called
Rayleigh fading.

(i) Compute the average probability of error for antipodal signaling subject to Rayleigh
fading.

(ii) Comment on the di�erence between Eqn. (4.10) (the average error probability without
fading) and your result in (i) (the average error probability with Rayleigh fading). Is it
signi�cant? For an average error probability Prfeg = 10�5 , �nd the necessary Eb=N0 for
both cases.

1In a more realistic model, not only the amplitude, but also the phase of the channel transfer function
is a random variable.
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Problem 4. (i) The root-mean square (rms) bandwidth of a low-pass signal g(t) of �nite
energy is de�ned by

Wrms =

"R1
�1 f 2jG(f)j2dfR1
�1 jG(f)j2df

#1=2
where jG(f)j2j is the energy spectral density of the signal. Correspondingly, the root
mean-square (rms) duration of the signal is de�ned by

Trms =

"R1
�1 t2jg(t)j2dtR1
�1 jg(t)j2dt

#1=2
:

Using these de�nitions and assuming that jg(t)j ! 0 faster than 1/
pjtj as jtj ! 1 ,

show that

TrmsWrms � 1

4�
:

Hint: Use Schwarz's inequality�Z 1

�1
[g�1(t)g2(t) + g1(t)g

�
2(t)]dt

�2

� 4

Z 1

�1
jg1(t)j2dt

Z 1

�1
jg2(t)j2dt

in which we set
g1(t) = tg(t)

and

g2(t) =
dg(t)

dt
:

(ii) Consider a Gaussian pulse de�ned by

g(t) = exp(��t2):

Show that for this signal, the equality

TrmsWrms =
1

4�

can be reached.

Hint:

exp(��t2) F ! exp(��f 2):
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