ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 15	Information Theory and Coding
Midterm Exam	November 9, 2007

Three problems with a total of 110 points (100 plus bonus 10). Duration 2 hours and 45 minutes. 4 sheets of notes allowed.

Good luck!

PROBLEM 1. (30 Points)

(a) (10 Points) Show that $I(U;V) \ge I(U;V|T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.

Fix a conditional probability distribution p(y|x), and suppose $p_1(x)$ and $p_2(x)$ are two probability distributions on \mathcal{X} .

For $k \in \{1, 2\}$, let I_k denote the mutual information between X and Y when the distribution of X is $p_k(\cdot)$.

For $0 \le \lambda \le 1$, let W be a random variable, taking values in $\{1, 2\}$, with

$$\Pr(W=1) = \lambda, \quad \Pr(W=2) = 1 - \lambda.$$

Define

$$p_{W,X,Y}(w,x,y) = \begin{cases} \lambda p_1(x) p(y|x) & \text{if } w = 1\\ (1-\lambda) p_2(x) p(y|x) & \text{if } w = 2. \end{cases}$$

- (b) (5 Points) Express I(X; Y|W) in terms of I_1 , I_2 and λ .
- (c) (5 Points) Express p(x) in terms of $p_1(x)$, $p_2(x)$ and λ .
- (d) (10 Points) Using (a), (b) and (c) show that, for every fixed conditional distribution $p_{Y|X}$, the mutual information I(X;Y) is a concave \cap function of p_X .

PROBLEM 2. (30 Points) Suppose that a discrete memoryless source U_1, U_2, \ldots with alphabet \mathcal{U} is governed by one of K probability distributions. In other words, U_1, U_2, \ldots are i.i.d. random variables with probability distribution p_U , and for some $k = 1, \ldots, K$, p_U satisfies $p_U(u) = p_k(u)$ for all u.

Let $\alpha_1, \ldots, \alpha_K$ be numbers such that $\alpha_k > 0$ and $\sum_{k=1}^K \alpha_k = 1$.

(a) (5 Points) Let $q(u) = \sum_{k=1}^{K} \alpha_k p_k(u)$. Show that there exist a prefix-free code \mathcal{C} such that

$$\operatorname{length}(\mathcal{C}(u)) \leq \lceil \log_2(1/q(u)) \rceil.$$

(b) (10 Points) Let $L_k(\mathcal{C}) = \sum_u p_k(u) \operatorname{length}(\mathcal{C}(u))$ be the average codeword length of a code \mathcal{C} if the distribution of the source is p_k . Let $H_k = \sum_u p_k(u) \log_2(1/p_k(u))$ be the entropy of the source under the same assumption. Show that for the code in part (a),

$$0 \le L_k - H_k < 1 + \log_2(1/\alpha_k)$$

for every k.

(c) (5 Points) Show that there is a prefix-free code \mathcal{C} for which

$$\max_{1 \le k \le K} [L_k(\mathcal{C}) - H_k] \le 1 + \log K.$$

(d) (10 Points) Rather than encoding letters one by one, now consider encoding the source in blocks of L letters. Show that there exists a prefix-free code such that

$$\frac{E_k[\text{number of bits}]}{\text{source letter}} \le H_k + \frac{1 + \log K}{L}$$

for each $1 \leq k \leq K$, where E_k is the expectation under the assumption that $p_U(u) = p_k(u)$.

PROBLEM 3. (50 Points) Let U_1, U_2, \ldots be the letters generated by a memoryless source with alphabet \mathcal{U} , i.e., U_1, U_2, \ldots are i.i.d. random variables taking values in the alphabet \mathcal{U} . Suppose the distribution p_U of the letters is known to be one of the two distributions, p_1 or p_2 . That is, either

- (i) $\Pr(U_i = u) = p_1(u)$ for all $u \in \mathcal{U}$ and $i \ge 1$, or
- (ii) $\Pr(U_i = u) = p_2(u)$ for all $u \in \mathcal{U}$ and $i \ge 1$.

Let $K = |\mathcal{U}|$ be the number of letters in the alphabet \mathcal{U} , let $H_1(U)$ denote the entropy of U under (i), and $H_2(U)$ denote the entropy of U under (ii). Let $p_{j,\min} = \min_{u \in \mathcal{U}} p_j(u)$ be the probability of the least likely letter under distribution p_j . For a word $w = u_1 u_2 \dots u_n$, let $p_j(w) = \prod_{i=1}^n p_j(u_i)$ be its probability under the distribution p_j , define $p_j(\text{empty string}) = 1$. Let $\hat{p}(w) = \max_{j=1,2} p_j(w)$.

(a) (5 Points) Given a positive integer α , let \mathcal{S} be a set of α words w with largest $\hat{p}(\cdot)$. Show that \mathcal{S} forms the intermediate nodes of a K-ary tree \mathcal{T} with $1 + (K-1)\alpha$ leaves. [Hint: if $w \in \mathcal{S}$ what can we say about its prefixes?]

Let \mathcal{W} be the leaves of the tree \mathcal{T} , by part (a) they form a valid, prefix-free dictionary for the source. Let $H_1(W)$ and $H_2(W)$ be the entropy of the dictionary words under distributions p_1 and p_2 .

- (b) (5 Points) Let $Q = \min_{v \in S} \hat{p}(v)$. Show that for any $w \in \mathcal{W}$, $\hat{p}(w) \leq Q$.
- (c) (5 Points) Show that for $j = 1, 2, H_j(W) \ge \log(1/Q)$.
- (d) (10 Points) Let \mathcal{W}_1 be the set of leaves w such that p_1 (parent of w) $\geq p_2$ (parent of w). Show that $|\mathcal{W}_1|Qp_{1,\min} \leq 1$.
- (e) (5 Points) Show that $|\mathcal{W}| \leq \frac{1}{Q}(1/p_{1,\min} + 1/p_{2,\min}).$
- (f) (10 Points) Let $E_j[\text{length}(W)]$ denote the expected length of a dictionary word under distribution j. The variable-to-fixed-length code based on the dictionary constructed above emits

$$\rho_j = \frac{|\log |\mathcal{W}||}{E_j[\operatorname{length}(W)]}$$
 bits per source letter

if the distribution of the source is p_j . Show that

$$\rho_j < H_j(U) + \frac{1 + \log(1/p_{1,\min} + 1/p_{2,\min})}{E_j[\text{length}(W)]}.$$

(Hint: relate $\log |\mathcal{W}|$ to $H_j(W)$ and recall that $H_j(W) = H_j(U)E_j[\text{length}(W)]$.)

(g) (10 Points) Show that as α gets larger, this method compresses the source to its entropy for both the assumptions (i), (ii) given above.