ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 15
Information Theory and Coding
Midterm Exam November 9, 2007

Three problems with a total of 110 points (100 plus bonus 10).
Duration 2 hours and 45 minutes.
4 sheets of notes allowed.
Good luck!
Problem 1. (30 Points)
(a) (10 Points) Show that $I(U ; V) \geq I(U ; V \mid T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.

Fix a conditional probability distribution $p(y \mid x)$, and suppose $p_{1}(x)$ and $p_{2}(x)$ are two probability distributions on \mathcal{X}.

For $k \in\{1,2\}$, let I_{k} denote the mutual information between X and Y when the distribution of X is $p_{k}(\cdot)$.

For $0 \leq \lambda \leq 1$, let W be a random variable, taking values in $\{1,2\}$, with

$$
\operatorname{Pr}(W=1)=\lambda, \quad \operatorname{Pr}(W=2)=1-\lambda .
$$

Define

$$
p_{W, X, Y}(w, x, y)= \begin{cases}\lambda p_{1}(x) p(y \mid x) & \text { if } w=1 \\ (1-\lambda) p_{2}(x) p(y \mid x) & \text { if } w=2\end{cases}
$$

(b) (5 Points) Express $I(X ; Y \mid W)$ in terms of I_{1}, I_{2} and λ.
(c) (5 Points) Express $p(x)$ in terms of $p_{1}(x), p_{2}(x)$ and λ.
(d) (10 Points) Using (a), (b) and (c) show that, for every fixed conditional distribution $p_{Y \mid X}$, the mutual information $I(X ; Y)$ is a concave \cap function of p_{X}.

Problem 2. (30 Points) Suppose that a discrete memoryless source U_{1}, U_{2}, \ldots with alphabet \mathcal{U} is governed by one of K probability distributions. In other words, U_{1}, U_{2}, \ldots are i.i.d. random variables with probability distribution p_{U}, and for some $k=1, \ldots, K, p_{U}$ satisfies $p_{U}(u)=p_{k}(u)$ for all u.

Let $\alpha_{1}, \ldots, \alpha_{K}$ be numbers such that $\alpha_{k}>0$ and $\sum_{k=1}^{K} \alpha_{k}=1$.
(a) (5 Points) Let $q(u)=\sum_{k=1}^{K} \alpha_{k} p_{k}(u)$. Show that there exist a prefix-free code \mathcal{C} such that

$$
\operatorname{length}(\mathcal{C}(u)) \leq\left\lceil\log _{2}(1 / q(u))\right\rceil
$$

(b) (10 Points) Let $L_{k}(\mathcal{C})=\sum_{u} p_{k}(u)$ length $(\mathcal{C}(u))$ be the average codeword length of a code \mathcal{C} if the distribution of the source is p_{k}. Let $H_{k}=\sum_{u} p_{k}(u) \log _{2}\left(1 / p_{k}(u)\right)$ be the entropy of the source under the same assumption. Show that for the code in part (a),

$$
0 \leq L_{k}-H_{k}<1+\log _{2}\left(1 / \alpha_{k}\right)
$$

for every k.
(c) (5 Points) Show that there is a prefix-free code \mathcal{C} for which

$$
\max _{1 \leq k \leq K}\left[L_{k}(\mathcal{C})-H_{k}\right] \leq 1+\log K
$$

(d) (10 Points) Rather than encoding letters one by one, now consider encoding the source in blocks of L letters. Show that there exists a prefix-free code such that

$$
\frac{E_{k}[\text { number of bits }]}{\text { source letter }} \leq H_{k}+\frac{1+\log K}{L}
$$

for each $1 \leq k \leq K$, where E_{k} is the expectation under the assumption that $p_{U}(u)=$ $p_{k}(u)$.

Problem 3. (50 Points) Let U_{1}, U_{2}, \ldots be the letters generated by a memoryless source with alphabet \mathcal{U}, i.e., U_{1}, U_{2}, \ldots are i.i.d. random variables taking values in the alphabet \mathcal{U}. Suppose the distribution p_{U} of the letters is known to be one of the two distributions, p_{1} or p_{2}. That is, either
(i) $\operatorname{Pr}\left(U_{i}=u\right)=p_{1}(u)$ for all $u \in \mathcal{U}$ and $i \geq 1$, or
(ii) $\operatorname{Pr}\left(U_{i}=u\right)=p_{2}(u)$ for all $u \in \mathcal{U}$ and $i \geq 1$.

Let $K=|\mathcal{U}|$ be the number of letters in the alphabet \mathcal{U}, let $H_{1}(U)$ denote the entropy of U under (i), and $H_{2}(U)$ denote the entropy of U under (ii). Let $p_{j, \min }=\min _{u \in \mathcal{U}} p_{j}(u)$ be the probability of the least likely letter under distribution p_{j}. For a word $w=u_{1} u_{2} \ldots u_{n}$, let $p_{j}(w)=\prod_{i=1}^{n} p_{j}\left(u_{i}\right)$ be its probability under the distribution p_{j}, define $p_{j}($ empty string $)=$ 1. Let $\hat{p}(w)=\max _{j=1,2} p_{j}(w)$.
(a) (5 Points) Given a positive integer α, let \mathcal{S} be a set of α words w with largest $\hat{p}(\cdot)$. Show that \mathcal{S} forms the intermediate nodes of a K-ary tree \mathcal{T} with $1+(K-1) \alpha$ leaves. [Hint: if $w \in \mathcal{S}$ what can we say about its prefixes?]

Let \mathcal{W} be the leaves of the tree \mathcal{T}, by part (a) they form a valid, prefix-free dictionary for the source. Let $H_{1}(W)$ and $H_{2}(W)$ be the entropy of the dictionary words under distributions p_{1} and p_{2}.
(b) (5 Points) Let $Q=\min _{v \in \mathcal{S}} \hat{p}(v)$. Show that for any $w \in \mathcal{W}, \hat{p}(w) \leq Q$.
(c) (5 Points) Show that for $j=1,2, H_{j}(W) \geq \log (1 / Q)$.
(d) (10 Points) Let \mathcal{W}_{1} be the set of leaves w such that $p_{1}($ parent of $w) \geq p_{2}($ parent of $w)$. Show that $\left|\mathcal{W}_{1}\right| Q p_{1, \text { min }} \leq 1$.
(e) (5 Points) Show that $|\mathcal{W}| \leq \frac{1}{Q}\left(1 / p_{1, \text { min }}+1 / p_{2, \text { min }}\right)$.
(f) (10 Points) Let $E_{j}[\operatorname{length}(W)]$ denote the expected length of a dictionary word under distribution j. The variable-to-fixed-length code based on the dictionary constructed above emits

$$
\rho_{j}=\frac{\lceil\log |\mathcal{W}|\rceil}{E_{j}[\operatorname{length}(W)]} \quad \text { bits per source letter }
$$

if the distribution of the source is p_{j}. Show that

$$
\rho_{j}<H_{j}(U)+\frac{1+\log \left(1 / p_{1, \min }+1 / p_{2, \min }\right)}{E_{j}[\operatorname{length}(W)]} .
$$

(Hint: relate $\log |\mathcal{W}|$ to $H_{j}(W)$ and recall that $H_{j}(W)=H_{j}(U) E_{j}[\operatorname{length}(W)]$.)
(g) (10 Points) Show that as α gets larger, this method compresses the source to its entropy for both the assumptions (i), (ii) given above.

