ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Communication Systems Department

Handout 19

Midterm

Information Theory and Coding
December 18, 2001

Three problems with a total of 115 points ($100+$ bonus).
Duration 2 hours and 45 minutes.
4 sheets of notes allowed.
Problem 1. (35 points.) Fano's inequality gives a lower bound on the probability of error in terms of the conditional entropy. In this problem we will derive an upper bound on the error probability of a maximum-aposteriori-probability (MAP) decoder in terms of the conditional entropy.

Let U and V be random variables with joint distribution $p_{U V}$. We will think of U as being the message, and V the received symbol. Let \hat{U} be the MAP estimate of U from V.

Given that $V=v$ is received, the MAP decoder will decide on a \hat{u} for which

$$
\operatorname{Pr}(U=\hat{u} \mid V=v) \geq \operatorname{Pr}(U=u \mid V=v) \quad \text { for all } u .
$$

(a) (5 points) Show that when $V=v$, the MAP decoder makes an error with probability

$$
\operatorname{Pr}(U \neq \hat{U} \mid V=v)=1-\max _{u} p_{U \mid V}(u \mid v)
$$

(b) (5 points) Show that

$$
\operatorname{Pr}(\hat{U} \neq U)=\sum_{v} p_{V}(v)\left[1-\max _{u} p_{U \mid V}(u \mid v)\right]
$$

(c) (15 points) Show that for any random variable W,

$$
\begin{aligned}
H(W) & \geq \sum_{w} p_{W}(w)\left[1-p_{W}(w)\right](\log e) \\
& \geq\left[1-\max _{w} p_{W}(w)\right](\log e) .
\end{aligned}
$$

[Hint: $\ln z \leq z-1$.
(d) (5 points) Show that

$$
H(U \mid V=v) \geq\left[1-\max _{u} p_{U \mid V}(u \mid v)\right](\log e)
$$

(e) (5 points) Show that

$$
\operatorname{Pr}(\hat{U} \neq U)(\log e) \leq H(U \mid V)
$$

Problem 2. (35 points) Consider a binary, stationary, Markov source described by

$$
\operatorname{Pr}\left(X_{k+1}=0 \mid X_{k}=0\right)=\operatorname{Pr}\left(X_{k+1}=1 \mid X_{k}=1\right)=\alpha
$$

where $0<\alpha<1$.
(a) (5 points) Find the entropy rate of this source.

Given a sequence X_{1}, X_{2}, \ldots, we can think of it as an alternating series of repetitions. For example if

$$
X_{1}, X_{2}, \ldots=0,0,0,1,1,0,1,1,1,1,1,0, \ldots
$$

it can be thought of as 0 repeated 3 times, 1 repeated 2 times, 0 repeated 1 time, 1 repeated 5 times, etc. Let R_{1}, R_{2}, \ldots be the lengths of these repetitions. In the example above, these are $3,2,1,5, \ldots$.
(b) (5 points) Argue that R_{1}, R_{2}, \ldots, form an i.i.d. sequence.
(c) $\left(7\right.$ points) Find the probability distribution of R_{k}.
(d) (10 points) Find the expectation $E\left[R_{1}\right]$, and the entropy $H\left(R_{1}\right)$. You may find the formula $\sum_{k=0}^{\infty} k \alpha^{k}=\alpha /(1-\alpha)^{2}$ useful.
(e) (8 points) The sequence X_{1}, X_{2}, \ldots can be described by first describing X_{1} using 1 bit and then describing R_{1}, R_{2}, \ldots Suppose the sequence R_{1}, R_{2}, \ldots is efficiently encoded into $\mathcal{H}(R)$ bits per symbol.
How many bits per symbol does this method use in encoding the sequence X_{1}, X_{2}, \ldots ? How does this compare to $\mathcal{H}(X)$ found in (a)?

Problem 3. (45 points) Given a stationary source X_{1}, X_{2}, \ldots, define

$$
A_{n}(X)=\frac{1}{n} H\left(X_{n+1}, \ldots, X_{2 n} \mid X_{1}, \ldots, X_{n}\right) .
$$

(a) (15 points) Show that $A_{n}(X) \geq A_{n+1}(X)$.
(b) (5 points) Find upper and lower bounds on $A_{n}(X)$ of the form

$$
H\left(X_{k} \mid X_{1}, \ldots, X_{k-1}\right) \leq A_{n}(X) \leq H\left(X_{m} \mid X_{1}, \ldots, X_{m-1}\right)
$$

where k and m are appropriately chosen.
(c) (5 points) Show that

$$
\lim _{n \rightarrow \infty} A_{n}(X)=\mathcal{H}(X)
$$

where $\mathcal{H}(X)$ is the entropy rate of the source.
(d) (15 points) Given n, consider a source coding scheme that operates as follows:

1. The source output X_{1}, X_{2}, \ldots, is parsed into blocks of length n. The first block is $Y_{1}=\left(X_{1}, \ldots, X_{n}\right)$, the second $Y_{2}=\left(X_{n+1}, \ldots, X_{2 n}\right)$, the third, $Y_{3}=$ $\left(X_{2 n+1}, \ldots, X_{3 n}\right)$, etc. Let \mathcal{Y} denote the set of values of Y_{k}.
2. The first block Y_{1} is coded in some uniquely decodable way, e.g., by using $\lceil\log |\mathcal{Y}|\rceil$ bits.
3. For $k \geq 1$, the $k+1$ st block Y_{k+1} is encoded into a codeword which may depend on Y_{k}. In other words, for each $v \in \mathcal{Y}$ we have a uniquely decodable code $C_{v}: \mathcal{Y} \rightarrow\{0,1\}^{*}$, and to encode Y_{k+1} we use the code $C_{Y_{k}}$.

Note that the long-term performance of this scheme will be determined by the performance of step 3 .
Let L_{n} be the average number of bits per source letter emitted by step 3. Find a lower bound to L_{n} that applies to the scheme described above. [Hint: consider the quantity A_{n}.]
(e) (5 points) Find an upper bound on the minimum possible L_{n}.

