ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 16
Information Theory and Coding
Midterm Solutions

Problem 1.

(a) Expanding $I(U, T ; V)$ by the chain rule:

$$
\begin{aligned}
I(U, T ; V) & =I(U ; V)+I(T ; V \mid U) \\
& =I(U ; V) \quad \text { since } T \text { and } V \text { are independent conditional on } U
\end{aligned}
$$

Using the chain rule again

$$
\begin{aligned}
I(U, T ; V) & =I(T ; V)+I(U ; V \mid T) \\
& \geq I(U ; V \mid T) \quad \text { since mutual information is non-negative }
\end{aligned}
$$

Putting the two together we see that $I(U ; V) \geq I(U ; V \mid T)$.
(b) $I(X ; Y \mid W)=\operatorname{Pr}(W=1) I(X ; Y \mid W=1)+\operatorname{Pr}(W=2) I(X ; Y \mid W=2)$. But conditional on $W=k$, the probability distribution of (X, Y) is $p_{k}(x) p(y \mid x)$ thus,

$$
I(X ; Y \mid W)=\lambda I_{1}+(1-\lambda) I_{2}
$$

(c) We obtain $p(x)$ by summing $p(w, x, y)$ over y and w. This gives

$$
p(x)=\lambda p_{1}(x)+(1-\lambda) p_{2}(x) .
$$

(d) Note that $p(w, x, y)$ is of the form $p(w) p(x \mid w) p(y \mid x)$, that is Y is independent of W when X is given. Thus by part (a)

$$
\begin{equation*}
I(X ; Y) \geq I(X ; Y \mid W) \tag{1}
\end{equation*}
$$

Letting $f\left(p_{X}\right)$ denote the value of $I(X ; Y)$ as a function the distribution of X we can rewrite (1) as

$$
f\left(\lambda p_{1}+(1-\lambda) p_{2}\right) \geq \lambda f\left(p_{1}\right)+(1-\lambda) f\left(p_{2}\right)
$$

which says that f is concave.

Problem 2.

(a) Note that with $l(u)=\left\lceil\log _{2}(1 / q(u))\right\rceil$ we have $2^{-l(u)} \leq q(u)$, and thus

$$
\sum_{u} 2^{-l(u)} \leq \sum_{u} q(u)
$$

As $q(u)=\sum_{k=1}^{K} \alpha_{k} p_{k}(u)$, we see that $\sum_{u} q(u)=\sum_{k} \alpha_{k}=1$. Thus $l(u)$ satisfies Kraft's inequality and so a prefix-free code \mathcal{C} with codewords lengths $l(u)$ exist.
(b) Since \mathcal{C} is a prefix free code, its expected codeword length L_{k} is at least H_{k} and we get $0 \leq L_{k}-H_{k}$. To upper bound $L_{k}-H_{k}$, note that since $\lceil x\rceil<x+1$,

$$
\begin{aligned}
L_{k}(\mathcal{C}) & =\sum_{u} p_{k}(u) \operatorname{length}(\mathcal{C}(u)) \\
& <\sum_{u} p_{k}(u)[1+\log (1 / q(u))] \\
& =1+\sum_{u} p_{k}(u) \log \frac{1}{q(u)} .
\end{aligned}
$$

Thus, $L_{k}-H_{k}<1+\sum_{u} p_{k}(u) \log \left[p_{k}(u) / q(u)\right]$. Observe now that $q(u) \geq \alpha_{k} p_{k}(u)$, thus $p_{k}(u) / q(u) \leq 1 / \alpha_{k}$, and

$$
L_{k}-H_{k}<1+\sum_{u} p_{k}(u) \log \left(1 / \alpha_{k}\right)=1+\log \left(1 / \alpha_{k}\right) .
$$

(c) Choosing $\alpha_{k}=1 / K$ for each k, we get the desired conclusion.
(d) We can view the source as producing a sequence of 'supersymbols' each consisting of a block of L letters. Applying part (c) to this 'supersource', and noticing that the entropy of the supersymbols is $H\left(U_{1}, \ldots, U_{L}\right)=L H(U)$, we see that there is a prefix-free code for which

$$
E_{k}[\text { number of bits to describe a supersymbol }]-L H_{k} \leq 1+\log _{2} K .
$$

for each k. Dividing the above by L we get the desired conclusion.

Problem 3.

(a) The intermediate nodes of a tree have the property that if w is an intermediate node, then so are its ancestors. Conversely, as we remark on the notes on Tunstall coding, if a set of nodes has this property, it is the intermediate nodes of some tree. Thus, all we need to show is that $w \in \mathcal{S}$ implies that its prefixes are also in \mathcal{S}.
Suppose v is a prefix of w, and $v \neq w$. Then $p_{j}(v)>p_{j}(w)$. Thus, $\hat{p}(v)>\hat{p}(w)$. Since \mathcal{S} is constructed by picking nodes with highest possible values of \hat{p}, we see that if $w \in \mathcal{S}$, then $v \in \mathcal{S}$.
From class, we know that if a K-ary tree has α intermediate nodes and the tree has $1+(K-1) \alpha$ leaves.
(b) Since \mathcal{S} contains the α nodes with the highest value of \hat{p}, no node outside of \mathcal{S} can have a strictly larger \hat{p} than any node in \mathcal{S}. Thus, $\hat{p}(w) \leq Q$.
(c) From part (b) $p_{j}(w) \leq \hat{p}(w) \leq Q$. Thus, $\log \left(1 / p_{j}(w)\right) \geq \log (1 / Q)$. Multipling both sides by $p_{j}(w)$ and summing over all w we get

$$
H_{j}(W) \geq \log (1 / Q)
$$

(d) For any leaf w in \mathcal{W} we have

$$
\begin{aligned}
p_{1}(w) & =p_{1}(\text { parent of } w) p_{1}(\text { last letter of } w) \\
& \geq p_{1}(\text { parent of } w) p_{1, \min }
\end{aligned}
$$

For a leaf w in $\mathcal{W}_{1}, p_{1}($ parent of $w)=\hat{p}($ parent of $w) \geq Q$. Thus, all leaves in \mathcal{W}_{1} have $p_{1}(w) \geq Q p_{1, \text { min }}$. Now

$$
1=\sum_{w \in \mathcal{W}} p_{1}(w) \geq \sum_{w \in \mathcal{W}_{1}} p_{1}(w) \geq\left|\mathcal{W}_{1}\right| Q p_{1, \text { min }} .
$$

(e) The same argument as in (d) establishes that $\left|\mathcal{W}_{2}\right| Q p_{2, \min } \leq 1$. Thus

$$
|\mathcal{W}|=\left|\mathcal{W}_{1} \cup \mathcal{W}_{2}\right| \leq\left|\mathcal{W}_{1}\right|+\left|\mathcal{W}_{2}\right| \leq \frac{1}{Q}\left[1 / p_{1, \min }+1 / p_{2, \min }\right]
$$

(f) By part (e) $\log |\mathcal{W}| \leq \log (1 / Q)+\log \left(1 / p_{1, \text { min }}+1 / p_{2, \text { min }}\right)$. By part (c) $\log (1 / Q) \leq$ $H_{j}(W)$, we also know $H_{j}(W)=H_{j}(U) E_{j}[\operatorname{length}(W)]$.
Thus, using $\lceil x\rceil<x+1$,

$$
\begin{align*}
\rho_{j} & =\frac{\lceil\log |\mathcal{W}|\rceil}{E_{j}[\operatorname{length}(W)]} \\
& <\frac{\left.1+H_{j}(U) E_{j}\left[\operatorname{length}[W]+\log \left(1 / p_{1, \min }+1 / p_{2, \min }\right)\right)\right]}{E_{j}[\operatorname{length}(W)]} \\
& =H_{j}(U)+\frac{1+\log \left(1 / p_{1, \min }+1 / p_{2, \min }\right)}{E_{j}[\operatorname{length}(W)]} . \tag{2}
\end{align*}
$$

(g) As α gets larger, since $|\mathcal{W}|=1+(K-1) \alpha, \log |\mathcal{W}|$ get larger. As we saw in part (f), $H_{j}(W)$ is lower bounded by $\log |\mathcal{W}|-\log \left(1 / p_{1, \text { min }}+1 / p_{2, \text { min }}\right)$, so $H_{j}(W)$ get larger too. Furthermore, $E_{j}[$ length $(W)]=H_{j}(W) / H_{j}(U)$, and thus as α gets large $E_{j}[$ length $(W)]$ gets larger also. Thus, as α gets large we see that the right hand side of (2) approaches $H_{j}(U)$.

