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Problem 1.

(a) Expanding I(U, T ; V ) by the chain rule:

I(U, T ; V ) = I(U ; V ) + I(T ; V |U)

= I(U ; V ) since T and V are independent conditional on U

Using the chain rule again

I(U, T ; V ) = I(T ; V ) + I(U ; V |T )

≥ I(U ; V |T ) since mutual information is non-negative

Putting the two together we see that I(U ; V ) ≥ I(U ; V |T ).

(b) I(X; Y |W ) = Pr(W = 1)I(X; Y |W = 1) + Pr(W = 2)I(X; Y |W = 2). But condi-
tional on W = k, the probability distribution of (X, Y ) is pk(x)p(y|x) thus,

I(X; Y |W ) = λI1 + (1− λ)I2.

(c) We obtain p(x) by summing p(w, x, y) over y and w. This gives

p(x) = λp1(x) + (1− λ)p2(x).

(d) Note that p(w, x, y) is of the form p(w)p(x|w)p(y|x), that is Y is independent of W
when X is given. Thus by part (a)

I(X; Y ) ≥ I(X; Y |W ). (1)

Letting f(pX) denote the value of I(X; Y ) as a function the distribution of X we can
rewrite (1) as

f(λp1 + (1− λ)p2) ≥ λf(p1) + (1− λ)f(p2)

which says that f is concave.

Problem 2.

(a) Note that with l(u) = dlog2(1/q(u))e we have 2−l(u) ≤ q(u), and thus∑
u

2−l(u) ≤
∑

u

q(u).

As q(u) =
∑K

k=1 αkpk(u), we see that
∑

u q(u) =
∑

k αk = 1. Thus l(u) satisfies
Kraft’s inequality and so a prefix-free code C with codewords lengths l(u) exist.



(b) Since C is a prefix free code, its expected codeword length Lk is at least Hk and we
get 0 ≤ Lk −Hk. To upper bound Lk −Hk, note that since dxe < x + 1,

Lk(C) =
∑

u

pk(u) length(C(u))

<
∑

u

pk(u)[1 + log(1/q(u))]

= 1 +
∑

u

pk(u) log
1

q(u)
.

Thus, Lk − Hk < 1 +
∑

u pk(u) log[pk(u)/q(u)]. Observe now that q(u) ≥ αkpk(u),
thus pk(u)/q(u) ≤ 1/αk, and

Lk −Hk < 1 +
∑

u

pk(u) log(1/αk) = 1 + log(1/αk).

(c) Choosing αk = 1/K for each k, we get the desired conclusion.

(d) We can view the source as producing a sequence of ‘supersymbols’ each consisting
of a block of L letters. Applying part (c) to this ‘supersource’, and noticing that
the entropy of the supersymbols is H(U1, . . . , UL) = LH(U), we see that there is a
prefix-free code for which

Ek[number of bits to describe a supersymbol]− LHk ≤ 1 + log2 K.

for each k. Dividing the above by L we get the desired conclusion.

Problem 3.

(a) The intermediate nodes of a tree have the property that if w is an intermediate node,
then so are its ancestors. Conversely, as we remark on the notes on Tunstall coding,
if a set of nodes has this property, it is the intermediate nodes of some tree. Thus,
all we need to show is that w ∈ S implies that its prefixes are also in S.

Suppose v is a prefix of w, and v 6= w. Then pj(v) > pj(w). Thus, p̂(v) > p̂(w).
Since S is constructed by picking nodes with highest possible values of p̂, we see that
if w ∈ S, then v ∈ S.

From class, we know that if a K-ary tree has α intermediate nodes and the tree has
1 + (K − 1)α leaves.

(b) Since S contains the α nodes with the highest value of p̂, no node outside of S can
have a strictly larger p̂ than any node in S. Thus, p̂(w) ≤ Q.

(c) From part (b) pj(w) ≤ p̂(w) ≤ Q. Thus, log(1/pj(w)) ≥ log(1/Q). Multipling both
sides by pj(w) and summing over all w we get

Hj(W ) ≥ log(1/Q).

(d) For any leaf w in W we have

p1(w) = p1(parent of w)p1(last letter of w)

≥ p1(parent of w)p1,min
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For a leaf w in W1, p1(parent of w) = p̂(parent of w) ≥ Q. Thus, all leaves in W1

have p1(w) ≥ Qp1,min. Now

1 =
∑
w∈W

p1(w) ≥
∑

w∈W1

p1(w) ≥ |W1|Qp1,min.

(e) The same argument as in (d) establishes that |W2|Qp2,min ≤ 1. Thus

|W| = |W1 ∪W2| ≤ |W1|+ |W2| ≤
1

Q
[1/p1,min + 1/p2,min].

(f) By part (e) log |W| ≤ log(1/Q) + log(1/p1,min + 1/p2,min). By part (c) log(1/Q) ≤
Hj(W ), we also know Hj(W ) = Hj(U)Ej[length(W )].

Thus, using dxe < x + 1,

ρj =
dlog |W|e

Ej[length(W )]

<
1 + Hj(U)Ej[length[W ] + log(1/p1,min + 1/p2,min))]

Ej[length(W )]

= Hj(U) +
1 + log(1/p1,min + 1/p2,min)

Ej[length(W )]
. (2)

(g) As α gets larger, since |W| = 1 + (K − 1)α, log |W| get larger. As we saw in part
(f), Hj(W ) is lower bounded by log |W| − log(1/p1,min + 1/p2,min), so Hj(W ) get
larger too. Furthermore, Ej[length(W )] = Hj(W )/Hj(U), and thus as α gets large
Ej[length(W )] gets larger also. Thus, as α gets large we see that the right hand side
of (2) approaches Hj(U).
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