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Problem 1.

(a) By the chain rule, the left hand side and the right hand side both equal H(E, M |Y ).

(b) Since E is a function of M and Y , we have H(E|M, Y ) = 0.

(c) H(M |E, Y ) = Pr(E = 0)H(M |Y,E = 0) + Pr(E = 1)H(M |Y,E = 1). But
H(M |Y, E = 0) is zero since when E = 0, g(Y ) = M and thus Y determines M , so
we have (i). On the other hand, given Y and E = 1, we know that M can take on
all values except g(Y ). Thus M can take on at most |M| − 1 values and its entropy
can be at most log(|M| − 1).

(d) Conditioning does not increase entropy, hence H(E|Y ) ≤ H(E).

(e) E takes on the value 1 when and only when M̂ 6= M . This event has probability
Pe, so Pr(E = 1) = Pe, and Pr(E = 0) = 1 − Pe. We then conclude that H(E) =
−Pe log Pe − (1− Pe) log(1− Pe) = h(Pe).

(f) We have

H(M |Y ) + H(E|M, Y ) = H(E|Y ) + H(M |E, Y ) from (a)

H(M |Y ) = H(E|Y ) + H(M |E, Y ) from (b)

H(M |Y ) ≤ H(E|Y ) + Pr(E = 1) log(|M| − 1) from (c)

H(M |Y ) ≤ H(E) + Pr(E = 1) log(|M| − 1) from (d)

H(M |Y ) ≤ h(Pe) + Pe log(|M| − 1) from (e).

Problem 2.

(a) We have

(i) H(X|Y ) = H(X) since X and Y are independent.

(ii) H(X|K) = H(X) since X and K are independent.

(iii) H(Y |X, K) = 0 since X and K determine Y .

(iv) H(X|Y,K) = 0 since Y and K determine X by the decryptability condition.

(v) I(X; Y |K) = H(X|K)−H(X|Y,K) = H(X) by (iv) and (ii).

(vi) H(Y |K) = I(X; Y |K) + H(Y |X, K) = H(X) by (v) and (iii).

(b) Suppose k a key common to both K(x1) and K(x2). Then, the pair y0, k can be
decrypted as either x1 or x2, contradicting the decryptability condition.



(c) Since I(X; Y ) = 0 we know that X and Y are independent and thus, Pr(Y = y) =
Pr(Y = y|X = x) for all x and y. In particular

0 < Pr(Y = y0) = Pr(Y = y0|X = x).

Thus for each x, K(x) is not empty, for otherwise Pr(Y = y0|X = x) would have been
zero. If any K(x) had more than one element, then the total number of keys would
exceed the number of source letters; thus each K(x) must have exactly one element.

(d) Given that X = x, the only way Y = y0 is when K = k(x). Since X and K are
independent this happens with probability Pr(K = k(x)).

(e) We have Pr(Y = y0) = Pr(Y = y0|X = x) = Pr(K = k(x)). Since the left hand side
does not depend on x, the same must be true for the right hand side. Since k(x)
exhausts all the keys as x ranges over the source letters, we see that Pr(K = k) does
not depend on k and hence that K is uniformly distributed.

Problem 3.

(a) If for some i, qi < pi−1, we can exchange the subtrees rooted at qi and pi−1. This
would elongate by 1 the codewords for a set of source letters with probability qi and
shorten by 1 the codewords for a set of source letters with probability pi−1. Since
qi < pi−1 this shortens the expected codeword length by pi−1 − qi, contradicting the
optimality of the Huffman code. [Alternatively, if qi < pi−1, the Huffman procedure
would have merged qi−1 with qi, not pi−1.]

(b) We have p0 = F0p0 and p1 = q0 + p0 ≥ F1p0. Using these facts as our induction base,
suppose that pn ≥ Fn for all n < i. Then,

pi = pi−1 + qi−1

≥ pi−1 + pi−2 part (a)

≥ Fi−1p0 + Fi−2p0 induction hypothesis

= Fip0 Fibonacci recursion

completing the the proof by induction.

(c) Since 1 = pn0 ≥ Fn0p0, the claim follows.

(d) If qi = pi−1 the Huffman procedure can choose to merge qi−1 with either qi or pi−1

without loss of optimality. For three source letters, any distribution of the form
{α, α, 1 − 2α} for α ≥ 1/3 yields a valid example. For larger source alphabets,
{1/8, 1/8, 2/8, 4/8}, {1/16, 1/16, 2/16, 4/16, 8/16}, . . . are other possible examples.

(e) Since q0 > 0, we have p1 > F1p0 which says that the bound in part (b) (and thus
in part (c)) cannot be made to hold with equality. However, by letting qi = pi−1 for
i ≥ 1 as in part (d), one will get pi = Fip0 + Fi−1q0 for i ≥ 1: for i = 1, 2, 3, the
equality holds (induction base), assuming that it holds for all n < i,

pi = pi−1 + qi−1

= pi−1 + pi−2

= Fi−1p0 + Fi−2q0 + Fi−2p0 + Fi−3q0

= Fip0 + Fi−1q0
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proving the claim. Now, choose q0 small enough to approach equality in pi ≥ Fip0 all
i (upto n0). Same construction yields

p0 = (1− Fn0−1q0)/Fn0

which can be made arbitrarily close to 1/Fn0 by taking small enough q0.

The Fibonacci recursion can be solved to yield Fn = [φn+1 − φ−n−1]/
√

5 where φ =
(1 +

√
5)/2. The last result shows that, for small p0 one can get

n0 ≈
− log2 p0

log2 φ
≈ −1.45 log2 p0.

In other words, for some source letters, the Huffman procedure can yield a codeword
that is much longer than one would expect, − log p0.
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