ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Communication Systems Department

Handout 16	Information Theory and Coding
Solutions to Midterm	December 4, 2000

Problem 1.

- (a) By the chain rule, the left hand side and the right hand side both equal H(E, M|Y).
- (b) Since E is a function of M and Y, we have H(E|M, Y) = 0.
- (c) $H(M|E,Y) = \Pr(E = 0)H(M|Y,E = 0) + \Pr(E = 1)H(M|Y,E = 1)$. But H(M|Y,E = 0) is zero since when E = 0, g(Y) = M and thus Y determines M, so we have (i). On the other hand, given Y and E = 1, we know that M can take on all values except g(Y). Thus M can take on at most $|\mathcal{M}| 1$ values and its entropy can be at most $\log(|\mathcal{M}| 1)$.
- (d) Conditioning does not increase entropy, hence $H(E|Y) \leq H(E)$.
- (e) E takes on the value 1 when and only when $\hat{M} \neq M$. This event has probability P_e , so $\Pr(E = 1) = P_e$, and $\Pr(E = 0) = 1 P_e$. We then conclude that $H(E) = -P_e \log P_e (1 P_e) \log(1 P_e) = h(P_e)$.
- (f) We have

$$H(M|Y) + H(E|M,Y) = H(E|Y) + H(M|E,Y)$$
from (a)

$$H(M|Y) = H(E|Y) + H(M|E,Y)$$
from (b)

$$H(M|Y) \le H(E|Y) + \Pr(E=1)\log(|\mathcal{M}|-1)$$
from (c)

$$H(M|Y) \le H(E) + \Pr(E=1)\log(|\mathcal{M}| - 1) \qquad \text{from (d)}$$

$$H(M|Y) \le h(P_e) + P_e \log(|\mathcal{M}| - 1)$$
 from (e).

Problem 2.

- (a) We have
 - (i) H(X|Y) = H(X) since X and Y are independent.
 - (ii) H(X|K) = H(X) since X and K are independent.
 - (iii) H(Y|X, K) = 0 since X and K determine Y.
 - (iv) H(X|Y,K) = 0 since Y and K determine X by the decryptability condition.
 - (v) I(X;Y|K) = H(X|K) H(X|Y,K) = H(X) by (iv) and (ii).
 - (vi) H(Y|K) = I(X;Y|K) + H(Y|X,K) = H(X) by (v) and (iii).
- (b) Suppose k a key common to both $\mathcal{K}(x_1)$ and $\mathcal{K}(x_2)$. Then, the pair y_0 , k can be decrypted as either x_1 or x_2 , contradicting the decryptability condition.

(c) Since I(X;Y) = 0 we know that X and Y are independent and thus, $\Pr(Y = y) = \Pr(Y = y | X = x)$ for all x and y. In particular

$$0 < \Pr(Y = y_0) = \Pr(Y = y_0 | X = x).$$

Thus for each x, $\mathcal{K}(x)$ is not empty, for otherwise $\Pr(Y = y_0 | X = x)$ would have been zero. If any $\mathcal{K}(x)$ had more than one element, then the total number of keys would exceed the number of source letters; thus each $\mathcal{K}(x)$ must have exactly one element.

- (d) Given that X = x, the only way $Y = y_0$ is when K = k(x). Since X and K are independent this happens with probability Pr(K = k(x)).
- (e) We have $\Pr(Y = y_0) = \Pr(Y = y_0 | X = x) = \Pr(K = k(x))$. Since the left hand side does not depend on x, the same must be true for the right hand side. Since k(x) exhausts all the keys as x ranges over the source letters, we see that $\Pr(K = k)$ does not depend on k and hence that K is uniformly distributed.

Problem 3.

- (a) If for some $i, q_i < p_{i-1}$, we can exchange the subtrees rooted at q_i and p_{i-1} . This would elongate by 1 the codewords for a set of source letters with probability q_i and shorten by 1 the codewords for a set of source letters with probability p_{i-1} . Since $q_i < p_{i-1}$ this shortens the expected codeword length by $p_{i-1} q_i$, contradicting the optimality of the Huffman code. [Alternatively, if $q_i < p_{i-1}$, the Huffman procedure would have merged q_{i-1} with q_i , not p_{i-1} .]
- (b) We have $p_0 = F_0 p_0$ and $p_1 = q_0 + p_0 \ge F_1 p_0$. Using these facts as our induction base, suppose that $p_n \ge F_n$ for all n < i. Then,

$$p_{i} = p_{i-1} + q_{i-1}$$

$$\geq p_{i-1} + p_{i-2}$$

$$\geq F_{i-1}p_{0} + F_{i-2}p_{0}$$

$$= F_{i}p_{0}$$
induction hypothesis
Fibonacci recursion

completing the the proof by induction.

- (c) Since $1 = p_{n_0} \ge F_{n_0} p_0$, the claim follows.
- (d) If $q_i = p_{i-1}$ the Huffman procedure can choose to merge q_{i-1} with either q_i or p_{i-1} without loss of optimality. For three source letters, any distribution of the form $\{\alpha, \alpha, 1 2\alpha\}$ for $\alpha \ge 1/3$ yields a valid example. For larger source alphabets, $\{1/8, 1/8, 2/8, 4/8\}, \{1/16, 1/16, 2/16, 4/16, 8/16\}, \ldots$ are other possible examples.
- (e) Since $q_0 > 0$, we have $p_1 > F_1 p_0$ which says that the bound in part (b) (and thus in part (c)) cannot be made to hold with equality. However, by letting $q_i = p_{i-1}$ for $i \ge 1$ as in part (d), one will get $p_i = F_i p_0 + F_{i-1} q_0$ for $i \ge 1$: for i = 1, 2, 3, the equality holds (induction base), assuming that it holds for all n < i,

$$p_{i} = p_{i-1} + q_{i-1}$$

= $p_{i-1} + p_{i-2}$
= $F_{i-1}p_{0} + F_{i-2}q_{0} + F_{i-2}p_{0} + F_{i-3}q_{0}$
= $F_{i}p_{0} + F_{i-1}q_{0}$

proving the claim. Now, choose q_0 small enough to approach equality in $p_i \ge F_i p_0$ all i (upto n_0). Same construction yields

$$p_0 = (1 - F_{n_0 - 1}q_0)/F_{n_0}$$

which can be made arbitrarily close to $1/F_{n_0}$ by taking small enough q_0 .

The Fibonacci recursion can be solved to yield $F_n = [\phi^{n+1} - \phi^{-n-1}]/\sqrt{5}$ where $\phi = (1 + \sqrt{5})/2$. The last result shows that, for small p_0 one can get

$$n_0 \approx \frac{-\log_2 p_0}{\log_2 \phi} \approx -1.45 \log_2 p_0.$$

In other words, for some source letters, the Huffman procedure can yield a codeword that is much longer than one would expect, $-\log p_0$.