ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Communication Systems Department

Solutions to Midterm

Problem 1.

(a) By the chain rule, the left hand side and the right hand side both equal $H(E, M \mid Y)$.
(b) Since E is a function of M and Y, we have $H(E \mid M, Y)=0$.
(c) $H(M \mid E, Y)=\operatorname{Pr}(E=0) H(M \mid Y, E=0)+\operatorname{Pr}(E=1) H(M \mid Y, E=1)$. But $H(M \mid Y, E=0)$ is zero since when $E=0, g(Y)=M$ and thus Y determines M, so we have (i). On the other hand, given Y and $E=1$, we know that M can take on all values except $g(Y)$. Thus M can take on at most $|\mathcal{M}|-1$ values and its entropy can be at most $\log (|\mathcal{M}|-1)$.
(d) Conditioning does not increase entropy, hence $H(E \mid Y) \leq H(E)$.
(e) E takes on the value 1 when and only when $\hat{M} \neq M$. This event has probability P_{e}, so $\operatorname{Pr}(E=1)=P_{e}$, and $\operatorname{Pr}(E=0)=1-P_{e}$. We then conclude that $H(E)=$ $-P_{e} \log P_{e}-\left(1-P_{e}\right) \log \left(1-P_{e}\right)=h\left(P_{e}\right)$.
(f) We have

$$
\begin{aligned}
H(M \mid Y)+H(E \mid M, Y) & =H(E \mid Y)+H(M \mid E, Y) & & \text { from (a) } \\
H(M \mid Y) & =H(E \mid Y)+H(M \mid E, Y) & & \text { from (b) } \\
H(M \mid Y) & \leq H(E \mid Y)+\operatorname{Pr}(E=1) \log (|\mathcal{M}|-1) & & \text { from (c) } \\
H(M \mid Y) & \leq H(E)+\operatorname{Pr}(E=1) \log (|\mathcal{M}|-1) & & \text { from (d) } \\
H(M \mid Y) & \leq h\left(P_{e}\right)+P_{e} \log (|\mathcal{M}|-1) & & \text { from (e). }
\end{aligned}
$$

Problem 2.

(a) We have
(i) $H(X \mid Y)=H(X)$ since X and Y are independent.
(ii) $H(X \mid K)=H(X)$ since X and K are independent.
(iii) $H(Y \mid X, K)=0$ since X and K determine Y.
(iv) $H(X \mid Y, K)=0$ since Y and K determine X by the decryptability condition.
(v) $I(X ; Y \mid K)=H(X \mid K)-H(X \mid Y, K)=H(X)$ by (iv) and (ii).
(vi) $H(Y \mid K)=I(X ; Y \mid K)+H(Y \mid X, K)=H(X)$ by (v) and (iii).
(b) Suppose k a key common to both $\mathcal{K}\left(x_{1}\right)$ and $\mathcal{K}\left(x_{2}\right)$. Then, the pair y_{0}, k can be decrypted as either x_{1} or x_{2}, contradicting the decryptability condition.
(c) Since $I(X ; Y)=0$ we know that X and Y are independent and thus, $\operatorname{Pr}(Y=y)=$ $\operatorname{Pr}(Y=y \mid X=x)$ for all x and y. In particular

$$
0<\operatorname{Pr}\left(Y=y_{0}\right)=\operatorname{Pr}\left(Y=y_{0} \mid X=x\right) .
$$

Thus for each $x, \mathcal{K}(x)$ is not empty, for otherwise $\operatorname{Pr}\left(Y=y_{0} \mid X=x\right)$ would have been zero. If any $\mathcal{K}(x)$ had more than one element, then the total number of keys would exceed the number of source letters; thus each $\mathcal{K}(x)$ must have exactly one element.
(d) Given that $X=x$, the only way $Y=y_{0}$ is when $K=k(x)$. Since X and K are independent this happens with probability $\operatorname{Pr}(K=k(x))$.
(e) We have $\operatorname{Pr}\left(Y=y_{0}\right)=\operatorname{Pr}\left(Y=y_{0} \mid X=x\right)=\operatorname{Pr}(K=k(x))$. Since the left hand side does not depend on x, the same must be true for the right hand side. Since $k(x)$ exhausts all the keys as x ranges over the source letters, we see that $\operatorname{Pr}(K=k)$ does not depend on k and hence that K is uniformly distributed.

Problem 3.

(a) If for some $i, q_{i}<p_{i-1}$, we can exchange the subtrees rooted at q_{i} and p_{i-1}. This would elongate by 1 the codewords for a set of source letters with probability q_{i} and shorten by 1 the codewords for a set of source letters with probability p_{i-1}. Since $q_{i}<p_{i-1}$ this shortens the expected codeword length by $p_{i-1}-q_{i}$, contradicting the optimality of the Huffman code. [Alternatively, if $q_{i}<p_{i-1}$, the Huffman procedure would have merged q_{i-1} with q_{i}, not p_{i-1}.]
(b) We have $p_{0}=F_{0} p_{0}$ and $p_{1}=q_{0}+p_{0} \geq F_{1} p_{0}$. Using these facts as our induction base, suppose that $p_{n} \geq F_{n}$ for all $n<i$. Then,

$$
\begin{aligned}
p_{i} & =p_{i-1}+q_{i-1} & & \\
& \geq p_{i-1}+p_{i-2} & & \text { part (a) } \\
& \geq F_{i-1} p_{0}+F_{i-2} p_{0} & & \text { induction hypothesis } \\
& =F_{i} p_{0} & & \text { Fibonacci recursion }
\end{aligned}
$$

completing the the proof by induction.
(c) Since $1=p_{n_{0}} \geq F_{n_{0}} p_{0}$, the claim follows.
(d) If $q_{i}=p_{i-1}$ the Huffman procedure can choose to merge q_{i-1} with either q_{i} or p_{i-1} without loss of optimality. For three source letters, any distribution of the form $\{\alpha, \alpha, 1-2 \alpha\}$ for $\alpha \geq 1 / 3$ yields a valid example. For larger source alphabets, $\{1 / 8,1 / 8,2 / 8,4 / 8\},\{1 / 16,1 / 16,2 / 16,4 / 16,8 / 16\}, \ldots$ are other possible examples.
(e) Since $q_{0}>0$, we have $p_{1}>F_{1} p_{0}$ which says that the bound in part (b) (and thus in part (c)) cannot be made to hold with equality. However, by letting $q_{i}=p_{i-1}$ for $i \geq 1$ as in part (d), one will get $p_{i}=F_{i} p_{0}+F_{i-1} q_{0}$ for $i \geq 1$: for $i=1,2,3$, the equality holds (induction base), assuming that it holds for all $n<i$,

$$
\begin{aligned}
p_{i} & =p_{i-1}+q_{i-1} \\
& =p_{i-1}+p_{i-2} \\
& =F_{i-1} p_{0}+F_{i-2} q_{0}+F_{i-2} p_{0}+F_{i-3} q_{0} \\
& =F_{i} p_{0}+F_{i-1} q_{0}
\end{aligned}
$$

proving the claim. Now, choose q_{0} small enough to approach equality in $p_{i} \geq F_{i} p_{0}$ all i (upto n_{0}). Same construction yields

$$
p_{0}=\left(1-F_{n_{0}-1} q_{0}\right) / F_{n_{0}}
$$

which can be made arbitrarily close to $1 / F_{n_{0}}$ by taking small enough q_{0}.
The Fibonacci recursion can be solved to yield $F_{n}=\left[\phi^{n+1}-\phi^{-n-1}\right] / \sqrt{5}$ where $\phi=$ $(1+\sqrt{5}) / 2$. The last result shows that, for small p_{0} one can get

$$
n_{0} \approx \frac{-\log _{2} p_{0}}{\log _{2} \phi} \approx-1.45 \log _{2} p_{0}
$$

In other words, for some source letters, the Huffman procedure can yield a codeword that is much longer than one would expect, $-\log p_{0}$.

