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Problem 1.

(a) E[X] =
∑
m

p(m)m =
∑
m

q(m)
p(m)m

q(m)
=

∑
m

q(m) exp
[
ln

p(m)m

q(m)

]
.

(b) Jensen’s inequality says for a convex function φ, E[φ(Y )] ≥ φ(E[Y ]) for any random
variable Y . Letting φ : z 7→ exp(z), and Y be the random variable that takes the

value ln p(m)m
q(m)

with probability q(m), we see that

E[φ(Y )] =
∑
m

q(m) exp
[
ln

p(m)m

q(m)

]
= E[X],

and

φ(E[Y ]) = exp(
∑
m

q(m) ln
p(m)m

q(m)
= exp

[
−D(q‖p) +

M∑
m=1

q(m) ln m
]
,

from which the desired result follows.

(c)
∑
m

q(m) ln m = −
∑
m

q(m) ln
q(m)

mq(m)
= H(q) −

∑
m

q(m) ln
1

mq(m)
. Letting Y to

be the random variable that takes the value 1/(mq(m)) with probability q(m), and
φ : z 7→ − ln z, we see that

E[φ(Y )] = −
∑
m

q(m) ln
1

mq(m)
and φ(E[Y ]) = − ln

[ M∑
m=1

1/m
]
.

Jensen’s inequality now gives us the desired conclusion.

(d) From parts (b) and (c), E[X] ≥ 1∑M
m=1 1/m

exp
[
−D(q‖p) + H(q)

]
. Using the fact

that
∑M

m=1 1/m ≤ 1 + ln M gives us the required inequality.

(e) Setting q(m) =
√

p(m) we have

H(q)−D(q‖p) =
∑
m

q(m) ln
p(m)

q(m)2
=

∑
m

q(m) ln[1/C2] = ln[1/C2],

and thus (d) yields to E[X] ≥ 1
1+ln M

1
C2 . But since

∑
m q(m) = 1, we see that

1/C =
∑

m

√
p(m), and the required inequality follows.



(f) Observe that with the given questioning strategy we ask m questions when X = m.
Thus, the expected number of questions is simply E[X]. The result then follows from
part (e).

(g) If p(1) ≥ p(2) . . . p(M), then

m =
m∑

i=1

1 ≤
m∑

i=1

√
p(i)/p(m) ≤

∑
i

√
p(i)/p(m).

Thus,

E[X] =
∑
m

p(m)m ≤
∑
m

∑
i

√
p(m)

√
p(i) =

[∑
m

√
p(m)

]2

.

This result is relevant to ‘guessing:’ Observe that since the bound in (f) is independent
of the ordering of the set X , it says that any questioning strategy to guess X, as long as it

can only ask questions of the form “is X = x” will ask (1+ln |X |)−1
[∑

x

√
p(x)

]2
questions

on the average. Part (g) then tells us that the bound is tight within the initial factor. If
one now considers the case when the variable to be guessed is a random vector X =
(X1, . . . , Xn), with iid components then the bounds on the expected number of questions
E[G] become

1

1 + n ln M

[∑
x

√
p(x)

]2n

≤ E[G(X)] ≤
[∑

x

√
p(x)

]2n

,

and thus capture the exponential dependence of E[G] on n.
Guessing strategies that are limited to asking questions of the form “is X = x” are

encountered, for example, in the guessing of passwords.

Problem 2.

(a) We have (among many other possible solutions)

I(K, X; K, Y ) = H(K, X)−H(K, X|K, Y )

= H(K) + H(X|K)−H(X|K, Y )

= H(K) + I(X; Y |K),

where the second line is obtained via the chain rule and by observing that H(K, X|K, Y ) =
H(X|K, Y ).

(b) Since I(X; Y |K) =
∑

k Pr(K = k)I(X; Y |K = k), and since I(X; Y |K = k), being
the mutual information over channel k, is less than Ck, it follows that

I(K, X; K, Y ) ≤ H(K) + E[CK ].

The equality will hold if p(x|k) = p∗k(x) where p∗k is the distribution that maximizes
the mutual information for channel k.
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(c) Observe that
∂

∂pk

H(K) + E[CK ] = ln
1

pk

− 1 + Ck.

With pk = exp(Ck)/
∑

i exp(Ci), we see that the above derivative becomes

−1 + ln
∑

i

exp(Ci)

which does not depend on k. Thus, this choice of pk satisfies the Kuhn-Tucker
conditions. As H(K) is a concave function of (p1, . . . , pM) and E[CK ] a linear function
of (p1, . . . , pM), the sum H(K) + E[CK ] is a concave function of (p1, . . . , pM). Thus
the Kuhn-Tucker conditions are necessary and sufficient for optimality.

(d) With pk as above, we see that

H(K) + E[CK ] =
∑

k

pk ln
1

pk

+
∑

k

pkCk

=
∑

k

pk ln
exp(Ck)

pk

=
∑

k

pk ln
[∑

i

exp(Ci)
]

= ln
∑

i

exp(Ci).

Problem 3.

(a) We have

E[− log2 q(X)] = −
∑

x

p(x) log2 q(x)

=
∑

x

p(x) log2

p(x)

p(x)q(x)

=
∑

x

p(x) log2

1

p(x)
+

∑
x

p(x) log2

p(x)

q(x)

= H(p) + D(p‖q).

(b) When q(x) is an integer power of 1/2, the code which minimizes
∑

x q(x)[length[C(x)]]
will choose length[C(x)] = − log2 q(x).

(c) From part (b) and (c) we see that

E[length[C(x)]−H(p) = H(p) + D(p‖q)−H(p) = D(p‖q).

(d) Observe that − 1
n

log2 q(X1, . . . , Xn) = 1
n

∑n
i=1(− log2 q(Xi)). Since Xi are i.i.d., so

are − log2 q(Xi). Thus, the weak law of large numbers tells us that for any δ > 0

lim
n→∞

Pr
{∣∣∣− 1

n
log2 q(X1, . . . , Xn)− E[− log2 q(X1)

)∣∣∣ > δ
}

= 0.

But from (a), E[− log2 q(X1)] = H(p) + H(p‖q), and the desired result follows.
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(e) We see from part (d) that as n gets large − 1
n

log2 q(X1, . . . , Xn) gets close to H(p) +
D(p‖q) with probability 1. Under the assumption that H(p) + D(p‖q) 6∈ [H(q) −
ε, H(q) + ε], we then conclude that as n gets large (X1, . . . , Xn) will not be in A(n, ε)
with probability 1, and thus the source output will not be assigned a codeword with
probability 1.

(f) By the same reasoning as in part (e), under the assumption that H(p) + D(p‖q) ∈
[H(q) − ε, H(q) + ε], as n gets large, the source output will be assigned a codeword
with probability 1. Now, since

|A(n, ε)| ≥ (1− ε)2n[H(q)−ε]),

we see that as n gets large

1

n
dlog2 |A(n, ε)|e ≥ H(q)− ε + O(1/n).

Under the assumption, H(q) ≥ H(p)D(p‖q)− ε, and thus for large n, the codeword
length per source letter exceeds

H(p) + D(p‖q)− 2ε.
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