ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 19
Information Theory and Coding
Midterm
December 17, 2002

Problem 1.

(a) Solution 1:

$$
\begin{aligned}
& \sum_{x} 2^{-l(x)}=\sum_{x} 2^{-\left[\left[\log _{2} M\right\rceil+\min _{m} l_{m}(x)\right]} \leq \sum_{x} 2^{-\left[\log _{2} M+\min _{m} l_{m}(x)\right]} \\
& =\frac{1}{M} \sum_{x} \max _{m} 2^{-l_{m}(x)} \leq \frac{1}{M} \sum_{x} \sum_{m=1}^{M} 2^{-l_{m}(x)}=\frac{1}{M} \sum_{m=1}^{M} \sum_{x} 2^{-l_{m}(x)} \leq \frac{1}{M} \sum_{m=1}^{M} 1=1 .
\end{aligned}
$$

Solution 2: We can construct a uniquely decodable (in fact prefix free) code with length $l(x)$: Given a symbol x, let m^{*} be such that $l_{m^{*}}(x)=\min _{m} l_{m}(x)$. Assign to x the codeword whose first $\left\lceil\log _{2} M\right\rceil$ bits describe m^{*}, and the rest of the $l_{m^{*}}(x)$ bits is the encoding of the x with the m^{*} th prefix-free code. The code is clearly uniquely decodable, and so its codewords lengths satisfy the Kraft inequality. But the code encodes x using $l(x)$ bits, so the conclusion follows.
(b) Since $\min _{m} l_{m}(x) \leq l_{m}(x)$ for any m, the inequality follows immediately.
(c) Let the m th codeword be the Huffman code for the distribution p_{m}. We then know that $p_{m}(x) l_{m}(x)<H_{m}+1$ where H_{m} denotes the entropy of the distribution p_{m}. (Alternatively we could have taken $l_{m}(x)=\left\lceil-\log _{2} p_{m}(x)\right\rceil$.) Let $p_{m^{*}}$ be the true distribution so that $H(X)=H_{m^{*}}$. By part (b),

$$
\sum_{x} p_{m^{*}}(x) l(x) \leq\left\lceil\log _{2} M\right\rceil+\sum_{x} p_{m^{*}} l_{m *}(x)<\left\lceil\log _{2} M\right\rceil+H(X)+1
$$

[If one applies this coding technique to blocks of source symbols, by encoding n source letters at a time, we see that the number of bits per source letter is upper bounded by

$$
\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right)+\frac{1}{n}\left[1+\left\lceil\log _{2} M\right\rceil\right] .
$$

For large n the second term approaches zero, and for a stationasy source the first term approaches the entropy rate. We thus see that this technique performs asymptotically as well as a technique that knows the true probability distribution in advance.]

Problem 2.

(a) Since the coin is fair, $P(X=0)=P(X=1)=1 / 2$ and thus $H(X)=1$ bit. On the other hand $H(X \mid Y=0)=H(X \mid Y=1)=1 / 4 \log _{2} 4+3 / 4 \log _{2}(4 / 3)=2-3 / 4 \log _{2} 3$ and thus $I(X ; Y)=3 / 4 \log _{2} 3-1$.
(b) At each bet, if we guess correctly, our fortune is $2(1-q)+q=2-q$ times our original fortune, if we guess wrong our fortune is q times our original fortune. So, at the i th bet our fortune is multiplied by

$$
(2-q)^{Z_{i}} q^{1-Z_{i}}
$$

and the result follows.
(c) Since Z_{i} are i.i.d., $E\left[C_{n}\right]=C_{0} E\left[\prod_{i=1}^{n}(2-q)^{Z_{i}} q^{1-Z_{i}}\right]=C_{0} \prod_{i=1}^{n} E\left[(2-q)^{Z_{i}} q^{1-Z_{i}}\right]=$ $C_{0}\left[\frac{3}{4}(2-q)+\frac{1}{4} q\right]^{n}=C_{0}[3 / 2-q / 2]^{n}$, and thus the value of q that maximizes $E\left[C_{n}\right]$ is $q=0$.
(d) Observe that

$$
R_{n}=\frac{1}{n} \sum_{i=1}^{n} \log _{2}\left[(2-q)^{Z_{i}} q^{1-Z_{i}}\right]
$$

is a sum of i.i.d. random variables, and so

$$
E\left[R_{n}\right]=E\left[\log _{2}\left[(2-q)^{Z_{1}} q^{1-Z_{1}}\right]\right]=\frac{3}{4} \log _{2}(2-q)+\frac{1}{4} \log _{2} q .
$$

Letting $F(q)=\frac{3}{4} \log _{2}(2-q)+\frac{1}{4} \log _{2} q$, the value of q that maximizes $E\left[R_{n}\right]$ is found by setting the derivative of F equal to zero:

$$
-\frac{3}{4} \frac{1}{2-q}+\frac{1}{4} \frac{1}{q}=0
$$

which yields $q=1 / 2$. With this value of $q, E\left[R_{n}\right]=I(X ; Y)$.
(e) The law of large numbers applies to R_{n}, so that with probability 1 ,

$$
\lim _{n \rightarrow \infty} R_{n}=\frac{3}{4} \log _{2}(2-q)+\frac{1}{4} \log _{2} q .
$$

Thus for large n, our fortune is close to $2^{n F(q)}$ with high probability, and so we should be choosing the value of q which maximizes $F(q)$, namely $1 / 2$. [In fact if we had chosen $q=0$, we would have lost all our money as soon as we guess wrong, which is sure to happen eventually.]

Problem 3.

(a) Since there are only 2^{k} distinct binary sequence of length k, if the code assigned more than 2^{k} of the symbols to binary sequences of length k, it cannot be non-singular, so (1) is necessary for the code to be non-singular. On the other hand, if we are given a length function that satisfies (1), we can assign to each symbol x a different binary sequence of length $l(x)$: since for every k there are enough binary sequences of length k to make sure that if $l(x)=l(y)=k$ then $C(x) \neq C(y)$. (If $l(x) \neq l(y)$ then $C(x) \neq C(y)$ is automatically true.)
(b) Assume to the contrary, that C is a non-singular code with least average length L and there is x and y for which $l(x)>l(y)$ and $p(x)>p(y)$. Consider a new code C^{\prime} obtained from C by exchanging the codewords for the symbols i and j and let L^{\prime} be its average length. Then

$$
L^{\prime}-L=p(x) l(y)+p(y) l(x)-p(x) l(x)-p(y) l(y)=[p(x)-p(y)][l(y)-l(x)]<0
$$

contradicting the premise that C has least average length.
(c) Since the source alphabet is of size K, it is clear that the non-singular code of least average length will only use the K shortest distinct binary sequences as the set of possible codes, namely the first K elements of the sequence $\lambda, 0,1,00,01, \ldots$ From the previous part we know that more probable letters should get shorter codes, and so we see that a code with shortest average length will assign to the i th source letter the i th element of the above sequence. By the hint, this element has length $\left\lfloor\log _{2} i\right\rfloor$, and the conclusion follows.
(d) By the part above, the least average length is $\sum_{i=1}^{K} p(i)\left\lfloor\log _{2} i\right\rfloor$, so for any non-singular code

$$
\begin{aligned}
L & \geq \sum_{i=1}^{K} p(i)\left\lfloor\log _{2} i\right\rfloor \\
& \geq \sum_{i=1}^{K} p(i)\left[\left(\log _{2} i\right)-1\right] \\
& =-1+\sum_{i=1}^{K} p(i) \log _{2} i \\
& =-1+\sum_{i=1}^{K} p(i) \log _{2} \frac{i p(i)}{p(i)} \\
& =-1+\sum_{i=1}^{K} p(i) \log _{2} \frac{1}{p(i)}+\sum_{i=1}^{K} p(i) \log _{2}[i p(i)] \\
& =H(X)-1-\sum_{i=1}^{K} p(i) \log _{2} \frac{1}{i p(i)} .
\end{aligned}
$$

(e) Since the both sides scale by a constant when we change the base of the logarithm it suffices to prove the result for the natural logarithm:

$$
\begin{aligned}
& \sum_{i=1}^{K} p(i) \ln \frac{1}{i p(i)}-\ln S_{K}=\sum_{i=1}^{K} p(i) \ln \frac{1}{i p(i) S_{K}} \\
& \leq \sum_{i=1}^{K} p(i)\left[\frac{1}{i p(i) S_{K}}-1\right]=\frac{1}{S_{K}} \sum_{i=1}^{K} \frac{1}{i}-\sum_{i=1}^{K} p(i)=1-1=0
\end{aligned}
$$

(f) Putting (d) and (e) together we obtain the desired result.
[Observe that if one applies the bound to a non-singular code for the alphabet \mathcal{X}^{n}, then we find that the number of bits per source letter such a code emits is lower bounded by

$$
\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right)-\frac{1}{n}\left[1+\log _{2}(1+n \ln K)\right] .
$$

As n gets large, the second term approaches zero, and for a stationary source the first term approaches the entropy rate. So, we see that for large block lenghts the non-singular codes cannot beat uniquely decodable codes.]

