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Problem 1.

(a) Solution 1:∑
x

2−l(x) =
∑

x

2−[dlog2 Me+minm lm(x)] ≤
∑

x

2−[log2 M+minm lm(x)]

=
1

M

∑
x

max
m

2−lm(x) ≤ 1

M

∑
x

M∑
m=1

2−lm(x) =
1

M

M∑
m=1

∑
x

2−lm(x) ≤ 1

M

M∑
m=1

1 = 1.

Solution 2: We can construct a uniquely decodable (in fact prefix free) code with
length l(x): Given a symbol x, let m∗ be such that lm∗(x) = minm lm(x). Assign to
x the codeword whose first dlog2 Me bits describe m∗, and the rest of the lm∗(x) bits
is the encoding of the x with the m∗th prefix-free code. The code is clearly uniquely
decodable, and so its codewords lengths satisfy the Kraft inequality. But the code
encodes x using l(x) bits, so the conclusion follows.

(b) Since minm lm(x) ≤ lm(x) for any m, the inequality follows immediately.

(c) Let the mth codeword be the Huffman code for the distribution pm. We then know
that pm(x)lm(x) < Hm + 1 where Hm denotes the entropy of the distribution pm.
(Alternatively we could have taken lm(x) = d− log2 pm(x)e.) Let pm∗ be the true
distribution so that H(X) = Hm∗ . By part (b),∑

x

pm∗(x)l(x) ≤ dlog2 Me+
∑

x

pm∗lm∗(x) < dlog2 Me+ H(X) + 1.

[If one applies this coding technique to blocks of source symbols, by encoding n source
letters at a time, we see that the number of bits per source letter is upper bounded
by

1

n
H(X1, . . . , Xn) +

1

n
[1 + dlog2 Me].

For large n the second term approaches zero, and for a stationasy source the first term
approaches the entropy rate. We thus see that this technique performs asymptotically
as well as a technique that knows the true probability distribution in advance.]

Problem 2.

(a) Since the coin is fair, P (X = 0) = P (X = 1) = 1/2 and thus H(X) = 1 bit. On the
other hand H(X|Y = 0) = H(X|Y = 1) = 1/4 log2 4 + 3/4 log2(4/3) = 2− 3/4 log2 3
and thus I(X; Y ) = 3/4 log2 3− 1.



(b) At each bet, if we guess correctly, our fortune is 2(1−q)+q = 2−q times our original
fortune, if we guess wrong our fortune is q times our original fortune. So, at the ith
bet our fortune is multiplied by

(2− q)Ziq1−Zi ,

and the result follows.

(c) Since Zi are i.i.d., E[Cn] = C0E
[∏n

i=1(2 − q)Ziq1−Zi
]

= C0

∏n
i=1 E

[
(2 − q)Ziq1−Zi

]
=

C0

[
3
4
(2 − q) + 1

4
q
]n

= C0[3/2 − q/2]n, and thus the value of q that maximizes E[Cn]
is q = 0.

(d) Observe that

Rn =
1

n

n∑
i=1

log2

[
(2− q)Ziq1−Zi

]
is a sum of i.i.d. random variables, and so

E[Rn] = E
[
log2[(2− q)Z1q1−Z1 ]

]
= 3

4
log2(2− q) + 1

4
log2 q.

Letting F (q) = 3
4
log2(2− q) + 1

4
log2 q, the value of q that maximizes E[Rn] is found

by setting the derivative of F equal to zero:

−3

4

1

2− q
+

1

4

1

q
= 0,

which yields q = 1/2. With this value of q, E[Rn] = I(X; Y ).

(e) The law of large numbers applies to Rn, so that with probability 1,

lim
n→∞

Rn = 3
4
log2(2− q) + 1

4
log2 q.

Thus for large n, our fortune is close to 2nF (q) with high probability, and so we should
be choosing the value of q which maximizes F (q), namely 1/2. [In fact if we had
chosen q = 0, we would have lost all our money as soon as we guess wrong, which is
sure to happen eventually.]

Problem 3.

(a) Since there are only 2k distinct binary sequence of length k, if the code assigned more
than 2k of the symbols to binary sequences of length k, it cannot be non-singular,
so (1) is necessary for the code to be non-singular. On the other hand, if we are
given a length function that satisfies (1), we can assign to each symbol x a different
binary sequence of length l(x): since for every k there are enough binary sequences
of length k to make sure that if l(x) = l(y) = k then C(x) 6= C(y). (If l(x) 6= l(y)
then C(x) 6= C(y) is automatically true.)

(b) Assume to the contrary, that C is a non-singular code with least average length L
and there is x and y for which l(x) > l(y) and p(x) > p(y). Consider a new code C ′

obtained from C by exchanging the codewords for the symbols i and j and let L′ be
its average length. Then

L′ − L = p(x)l(y) + p(y)l(x)− p(x)l(x)− p(y)l(y) = [p(x)− p(y)][l(y)− l(x)] < 0

contradicting the premise that C has least average length.
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(c) Since the source alphabet is of size K, it is clear that the non-singular code of least
average length will only use the K shortest distinct binary sequences as the set of
possible codes, namely the first K elements of the sequence λ, 0, 1, 00, 01, . . . . From
the previous part we know that more probable letters should get shorter codes, and
so we see that a code with shortest average length will assign to the ith source letter
the ith element of the above sequence. By the hint, this element has length blog2 ic,
and the conclusion follows.

(d) By the part above, the least average length is
∑K

i=1 p(i)blog2 ic, so for any non-singular
code

L ≥
K∑

i=1

p(i)blog2 ic

≥
K∑

i=1

p(i)[(log2 i)− 1]

= −1 +
K∑

i=1

p(i) log2 i

= −1 +
K∑

i=1

p(i) log2

ip(i)

p(i)

= −1 +
K∑

i=1

p(i) log2

1

p(i)
+

K∑
i=1

p(i) log2[ip(i)]

= H(X)− 1−
K∑

i=1

p(i) log2

1

ip(i)
.

(e) Since the both sides scale by a constant when we change the base of the logarithm it
suffices to prove the result for the natural logarithm:

K∑
i=1

p(i) ln
1

ip(i)
− ln SK =

K∑
i=1

p(i) ln
1

ip(i)SK

≤
K∑

i=1

p(i)
[ 1

ip(i)SK

− 1
]

=
1

SK

K∑
i=1

1

i
−

K∑
i=1

p(i) = 1− 1 = 0.

(f) Putting (d) and (e) together we obtain the desired result.

[Observe that if one applies the bound to a non-singular code for the alphabet X n,
then we find that the number of bits per source letter such a code emits is lower
bounded by

1

n
H(X1, . . . , Xn)− 1

n
[1 + log2(1 + n ln K)].

As n gets large, the second term approaches zero, and for a stationary source the
first term approaches the entropy rate. So, we see that for large block lenghts the
non-singular codes cannot beat uniquely decodable codes.]
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