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Problem 1.

(a) Given V = v, the MAP decoder will make an error if U is not the same as the û(v)
that the decoder chooses. Thus

Pr(error | |V = v) = Pr(U 6= û(v) | V = v) = 1− Pr(U = û(v) | V = v)

But û(v) satisfies Pr(U = û(v) | V = v) = maxu pU |V (u|v), so the conclusion follows.

(b) This follows from part (a) by multiplying both sides by pV (v) and summing over v.

(c) (15 points) For any random variable W ,

H(W ) = −
∑
w

pW (w) log pW (w)

= − log e
∑
w

pW (w) ln pW (w)

≥
∑
w

pW (w)[1− pW (w)](log e).

where the inequality follows from ln pW (w) ≤ pW (w) − 1 which is equivalent to
− ln pW (w) ≥ 1− pW (w).

Since 1− pW (w) ≥ q
4
= 1−maxw pW (w), we see that∑
w

pW (w)[1− pW (w)] ≥
∑
w

pW (w)q = q

from which we conclude that

H(W ) ≥ q = 1−max
w

pW (w).

(d) This follows exactly as in (c) if replace pW (w) by pU |V (u|v).

(e) Multiplying both sides of the inequality in (d) with pV (v) and summing over v we
get

H(U |V ) ≥
∑
v

pV (v)[1−max
u

pU |V (u|v)] log e,

but, by part (b) the right hand side is Pr(U 6= Û) log e.



Problem 2.

(a) We know that for a stationary Markov source the entropy rate is given by

H(X2|X1) = Pr(X1 = 0)H(X2|X1 = 0) + Pr(X1 = 1)H(X2|X1 = 1).

But H(X2|X1 = 0) = H(X2|X1 = 1) = −α logα − (1 − α) log(1 − α) and thus the
entropy rate is given by H(X) = h(α) = −α logα− (1− α) log(1− α).

(b) Now, given the values of R1, R2, . . . , Rk, we know that the source has emitted R1

repetitions of the same letter, followed by R2 repetitions of the other letter, R3

repetitions of the first letter, etc., and that the n + 1st letter where n = R1 + R2 +
· · · + Rk is different from the nth letter. Since the number of times the source will
repeat this n + 1st letter is does not depend on (i) the past symbols [Markov] and
(ii) what the n + 1st letter is [the source statistics don’t change if we replace 0 with
1], we see that Rk+1 is independent of R1, . . . , Rk. This shows that R1, R2, . . . form
an independent sequence. The condition (ii) above also shows that Rk are identically
distributed.

(c) Without loss of generality, let us consider R1. Since R1 is the number of times the
source repeats itself. So, R1 = r if and only if

Xk+1 = Xk, k = 1, . . . , r − 1, and Xr+1 6= Xr.

But this has probability

Pr(Xr+1 6= Xr | Xr)
r−1∏
k=1

Pr(Xk+1 = Xk | Xk) = (1− α)αr−1, r = 1, 2, . . . .

(d) We compute E[R1] =
∞∑
r=1

r(1− α)αr−1 = 1/(1− α), and

H(R1) = −
∞∑
r=1

(1− α)αr−1 log[(1− α)αr−1]

= −
∞∑
r=1

(1− α)αr−1 log(1− α)−
∞∑
r=1

(r − 1)(1− α)αr−1 logα

= − log(1− α)− α/(1− α) logα

= h(α)/(1− α).

(e) A long sequence X1, X2, . . . , XN , will correspond to long sequence R1, . . . , RM of run
lengths. Since each Ri encodes Ri of the source letters, by the law of large numbers
N/M → E[R1]. By the efficient encoding, the number of encoded bits L satisfies

(L− 1)/M → H(R).

Putting these together we see that

L/N → H(R)/E[R] = h(α) = H(X).
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Problem 3.

(a) Let Bi = H(Xi|X1, . . . , Xi−1). Since the source is stationary

Bi = H(Xi+1|X2, . . . , Xi) ≥ H(Xi+1|X1, . . . , Xi) = Bi+1,

so that Bi is a non-increasing sequence. Now

An+1 =
1

n+ 1
[Bn+2 + · · ·+B2n+1 +B2n+2] chain rule

≤ 1

n+ 1
[Bn+1 + · · ·+B2n +B2n+1] since Bi+1 ≤ Bi

Now, B2n+1 ≤ Bi for i = n + 1, . . . , 2n. If we sum these n inequalities, we get
nB2n+1 ≤ Bn+1 + · · ·+B2n, or B2n+1 ≤ 1

n
[Bn+1 + · · ·+B2n]. Using this in our bound

for An+1 we get

An+1 ≤
1

n+ 1
(1 + 1/n)[Bn+1 + · · ·+B2n]

=
1

n
[Bn+1 + · · ·+B2n]

= An.

(b) From An = 1
n
[Bn+1 + · · ·+B2n] and Bn+1 ≥ · · · ≥ B2n we see that

Bn+1 ≥ An ≥ B2n.

(c) Since lim
n→∞

Bn+1 = lim
n→∞

B2n = H(X), from part (b) we see that lim
n→∞

An(X) = H(X).

(d) Since the source is stationary we can, without loss of generality, consider the encoding
of Y2 by CY1 . Now, conditional of Y1 = v, Y2 has distribution pY2|Y1=v, and since Cv
is uniquely decodable the average number of bits used to encode Y2 when Y1 = v is
at least H(Y2|Y1 = v). Since Y1 = v with probability pY1(v), the average number of
bits used to encode Y2 is at least H(Y2|Y1). But since the encoding of Y2 encodes n
source letters, we see that

Ln ≥
1

n
H(Y2|Y1) =

1

n
H(Xn+1, . . . , X2n|X1, . . . , Xn) = An(X).

(e) We can choose the code Cv to have codeword lengths l(y) = d− log2 pY2|Y1(y|v)e. Note
that the codeword lengths satisfy the Kraft inequality:∑

y

2−l(y) ≤
∑
y

2log2 pY2|Y1
(y|v) =

∑
y

pY2|Y1(y|v) = 1,

and the average codeword length∑
y

pY2|Y1(y|v)l(y) <
∑
y

pY2|Y1(y|v)[− log2 pY2|Y1(y|v) + 1] = H(Y2|Y1 = v) + 1.

Since Y1 = v with probability pY1(v), the average number of bits used to encode Y2

with these encoders is at most H(Y2|Y1) + 1. Since the encoding of Y2 encodes n
source letters and the best encoder must to at least as well, we see that

minLn <
1

n
H(Y2|Y1) +

1

n
= An(X) +

1

n
.
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