# ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 

Communication Systems Department

## Handout 20

Midterm Solutions

Information Theory and Coding
December 18, 2001

## Problem 1.

(a) Given $V=v$, the MAP decoder will make an error if $U$ is not the same as the $\hat{u}(v)$ that the decoder chooses. Thus

$$
\operatorname{Pr}(\text { error }|\mid V=v)=\operatorname{Pr}(U \neq \hat{u}(v) \mid V=v)=1-\operatorname{Pr}(U=\hat{u}(v) \mid V=v)
$$

But $\hat{u}(v)$ satisfies $\operatorname{Pr}(U=\hat{u}(v) \mid V=v)=\max _{u} p_{U \mid V}(u \mid v)$, so the conclusion follows.
(b) This follows from part (a) by multiplying both sides by $p_{V}(v)$ and summing over $v$.
(c) (15 points) For any random variable $W$,

$$
\begin{aligned}
H(W) & =-\sum_{w} p_{W}(w) \log p_{W}(w) \\
& =-\log e \sum_{w} p_{W}(w) \ln p_{W}(w) \\
& \geq \sum_{w} p_{W}(w)\left[1-p_{W}(w)\right](\log e) .
\end{aligned}
$$

where the inequality follows from $\ln p_{W}(w) \leq p_{W}(w)-1$ which is equivalent to $-\ln p_{W}(w) \geq 1-p_{W}(w)$.
Since $1-p_{W}(w) \geq q \triangleq 1-\max _{w} p_{W}(w)$, we see that

$$
\sum_{w} p_{W}(w)\left[1-p_{W}(w)\right] \geq \sum_{w} p_{W}(w) q=q
$$

from which we conclude that

$$
H(W) \geq q=1-\max _{w} p_{W}(w)
$$

(d) This follows exactly as in (c) if replace $p_{W}(w)$ by $p_{U \mid V}(u \mid v)$.
(e) Multiplying both sides of the inequality in (d) with $p_{V}(v)$ and summing over $v$ we get

$$
H(U \mid V) \geq \sum_{v} p_{V}(v)\left[1-\max _{u} p_{U \mid V}(u \mid v)\right] \log e
$$

but, by part (b) the right hand side is $\operatorname{Pr}(U \neq \hat{U}) \log e$.

## Problem 2.

(a) We know that for a stationary Markov source the entropy rate is given by

$$
H\left(X_{2} \mid X_{1}\right)=\operatorname{Pr}\left(X_{1}=0\right) H\left(X_{2} \mid X_{1}=0\right)+\operatorname{Pr}\left(X_{1}=1\right) H\left(X_{2} \mid X_{1}=1\right)
$$

But $H\left(X_{2} \mid X_{1}=0\right)=H\left(X_{2} \mid X_{1}=1\right)=-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)$ and thus the entropy rate is given by $\mathcal{H}(X)=h(\alpha)=-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)$.
(b) Now, given the values of $R_{1}, R_{2}, \ldots, R_{k}$, we know that the source has emitted $R_{1}$ repetitions of the same letter, followed by $R_{2}$ repetitions of the other letter, $R_{3}$ repetitions of the first letter, etc., and that the $n+1$ st letter where $n=R_{1}+R_{2}+$ $\cdots+R_{k}$ is different from the $n$th letter. Since the number of times the source will repeat this $n+1$ st letter is does not depend on (i) the past symbols [Markov] and (ii) what the $n+1$ st letter is [the source statistics don't change if we replace 0 with 1], we see that $R_{k+1}$ is independent of $R_{1}, \ldots, R_{k}$. This shows that $R_{1}, R_{2}, \ldots$ form an independent sequence. The condition (ii) above also shows that $R_{k}$ are identically distributed.
(c) Without loss of generality, let us consider $R_{1}$. Since $R_{1}$ is the number of times the source repeats itself. So, $R_{1}=r$ if and only if

$$
X_{k+1}=X_{k}, \quad k=1, \ldots, r-1, \quad \text { and } \quad X_{r+1} \neq X_{r} .
$$

But this has probability

$$
\operatorname{Pr}\left(X_{r+1} \neq X_{r} \mid X_{r}\right) \prod_{k=1}^{r-1} \operatorname{Pr}\left(X_{k+1}=X_{k} \mid X_{k}\right)=(1-\alpha) \alpha^{r-1}, \quad r=1,2, \ldots
$$

(d) We compute $E\left[R_{1}\right]=\sum_{r=1}^{\infty} r(1-\alpha) \alpha^{r-1}=1 /(1-\alpha)$, and

$$
\begin{aligned}
H\left(R_{1}\right) & =-\sum_{r=1}^{\infty}(1-\alpha) \alpha^{r-1} \log \left[(1-\alpha) \alpha^{r-1}\right] \\
& =-\sum_{r=1}^{\infty}(1-\alpha) \alpha^{r-1} \log (1-\alpha)-\sum_{r=1}^{\infty}(r-1)(1-\alpha) \alpha^{r-1} \log \alpha \\
& =-\log (1-\alpha)-\alpha /(1-\alpha) \log \alpha \\
& =h(\alpha) /(1-\alpha) .
\end{aligned}
$$

(e) A long sequence $X_{1}, X_{2}, \ldots, X_{N}$, will correspond to long sequence $R_{1}, \ldots, R_{M}$ of run lengths. Since each $R_{i}$ encodes $R_{i}$ of the source letters, by the law of large numbers $N / M \rightarrow E\left[R_{1}\right]$. By the efficient encoding, the number of encoded bits $L$ satisfies

$$
(L-1) / M \rightarrow \mathcal{H}(R) .
$$

Putting these together we see that

$$
L / N \rightarrow \mathcal{H}(R) / E[R]=h(\alpha)=\mathcal{H}(X) .
$$

## Problem 3.

(a) Let $B_{i}=H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$. Since the source is stationary

$$
B_{i}=H\left(X_{i+1} \mid X_{2}, \ldots, X_{i}\right) \geq H\left(X_{i+1} \mid X_{1}, \ldots, X_{i}\right)=B_{i+1}
$$

so that $B_{i}$ is a non-increasing sequence. Now

$$
\begin{aligned}
A_{n+1} & =\frac{1}{n+1}\left[B_{n+2}+\cdots+B_{2 n+1}+B_{2 n+2}\right] & & \text { chain rule } \\
& \leq \frac{1}{n+1}\left[B_{n+1}+\cdots+B_{2 n}+B_{2 n+1}\right] & & \text { since } B_{i+1} \leq B_{i}
\end{aligned}
$$

Now, $B_{2 n+1} \leq B_{i}$ for $i=n+1, \ldots, 2 n$. If we sum these $n$ inequalities, we get $n B_{2 n+1} \leq B_{n+1}+\cdots+B_{2 n}$, or $B_{2 n+1} \leq \frac{1}{n}\left[B_{n+1}+\cdots+B_{2 n}\right]$. Using this in our bound for $A_{n+1}$ we get

$$
\begin{aligned}
A_{n+1} & \leq \frac{1}{n+1}(1+1 / n)\left[B_{n+1}+\cdots+B_{2 n}\right] \\
& =\frac{1}{n}\left[B_{n+1}+\cdots+B_{2 n}\right] \\
& =A_{n} .
\end{aligned}
$$

(b) From $A_{n}=\frac{1}{n}\left[B_{n+1}+\cdots+B_{2 n}\right]$ and $B_{n+1} \geq \cdots \geq B_{2 n}$ we see that

$$
B_{n+1} \geq A_{n} \geq B_{2 n}
$$

(c) Since $\lim _{n \rightarrow \infty} B_{n+1}=\lim _{n \rightarrow \infty} B_{2 n}=\mathcal{H}(X)$, from part (b) we see that $\lim _{n \rightarrow \infty} A_{n}(X)=\mathcal{H}(X)$.
(d) Since the source is stationary we can, without loss of generality, consider the encoding of $Y_{2}$ by $C_{Y_{1}}$. Now, conditional of $Y_{1}=v, Y_{2}$ has distribution $p_{Y_{2} \mid Y_{1}=v}$, and since $C_{v}$ is uniquely decodable the average number of bits used to encode $Y_{2}$ when $Y_{1}=v$ is at least $H\left(Y_{2} \mid Y_{1}=v\right)$. Since $Y_{1}=v$ with probability $p_{Y_{1}}(v)$, the average number of bits used to encode $Y_{2}$ is at least $H\left(Y_{2} \mid Y_{1}\right)$. But since the encoding of $Y_{2}$ encodes $n$ source letters, we see that

$$
L_{n} \geq \frac{1}{n} H\left(Y_{2} \mid Y_{1}\right)=\frac{1}{n} H\left(X_{n+1}, \ldots, X_{2 n} \mid X_{1}, \ldots, X_{n}\right)=A_{n}(X) .
$$

(e) We can choose the code $C_{v}$ to have codeword lengths $l(y)=\left\lceil-\log _{2} p_{Y_{2} \mid Y_{1}}(y \mid v)\right\rceil$. Note that the codeword lengths satisfy the Kraft inequality:

$$
\sum_{y} 2^{-l(y)} \leq \sum_{y} 2^{\log _{2} p_{Y_{2} \mid Y_{1}}(y \mid v)}=\sum_{y} p_{Y_{2} \mid Y_{1}}(y \mid v)=1,
$$

and the average codeword length

$$
\sum_{y} p_{Y_{2} \mid Y_{1}}(y \mid v) l(y)<\sum_{y} p_{Y_{2} \mid Y_{1}}(y \mid v)\left[-\log _{2} p_{Y_{2} \mid Y_{1}}(y \mid v)+1\right]=H\left(Y_{2} \mid Y_{1}=v\right)+1
$$

Since $Y_{1}=v$ with probability $p_{Y_{1}}(v)$, the average number of bits used to encode $Y_{2}$ with these encoders is at most $H\left(Y_{2} \mid Y_{1}\right)+1$. Since the encoding of $Y_{2}$ encodes $n$ source letters and the best encoder must to at least as well, we see that

$$
\min L_{n}<\frac{1}{n} H\left(Y_{2} \mid Y_{1}\right)+\frac{1}{n}=A_{n}(X)+\frac{1}{n} .
$$

