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Problem 1. Taking the hint:

0 ≤ D(q‖p)

=

∫
q(x) log

q(x)

p(x)
dx

=

∫
q(x) log q(x) dx +

∫
q(x) log

1

p(x)
dx

= −h(q) +

∫
q(x) log

1

p(x)
dx.

Now, note that log[1/p(x)] is of the form α+βx, and since densities p and q have the same
mean, we conclude that∫

q(x) log
1

p(x)
dx =

∫
p(x) log

1

p(x)
dx = h(p).

Thus, 0 ≤ −h(q) + h(p), yielding the desired conclusion.

Problem 2. It is clear that the input distribution that maximizes the capacity is X ∼
N (0, P ). Evaluating the mutual information for this distribution,

C2 = max I(X; Y1, Y2)

= h(Y1, Y2)− h(Y1, Y2|X)

= h(Y1, Y2)− h(Z1, Z2|X)

= h(Y1, Y2)− h(Z1, Z2)

Now since

(Z1, Z2) ∼ N
(
0,

[
N Nρ
Nρ N

])
,

we have

h(Z1, Z2) =
1

2
log(2πe)2|KZ | =

1

2
log(2πe)2N2(1− ρ2).

Since Y1 = X + Z1, and Y2 = X + Z2, we have

(Y1, Y2) ∼ N
(
0,

[
P + N P + ρN
P + ρN P + N

])
,

and

h(Y1, Y2) =
1

2
log(2πe)2|KY | =

1

2
log(2πe)2(N2(1− ρ2) + 2PN(1− ρ)).

Hence the capacity is

C2 = h(Y1, Y2)− h(Z1, Z2)

=
1

2
log

(
1 +

2P

N(1 + ρ)

)
.



(a) ρ = 1. In this case, C = 1
2
log(1+P/N), which is the capacity of a single look channel.

This is not surprising, since in this case Y1 = Y2.

(b) ρ = 0. In this case,

C =
1

2
log (1 + 2P/N) ,

which corresponds to using twice the power in a single look. The capacity is the same
as the capacity of the channel X → (Y1 + Y2).

(c) ρ = −1. In this case, C = ∞, which is not surprising since if we add Y1 and Y2, we
can recover X exactly, and so is equivalent to having a noiseless channel.

Note that the capacity of the above channel in all cases is the same as the capacity of the
channel X → Y1 + Y2. This is not true in general.

Problem 3. (a) By the water-filling solution discussed in class, it follows that we will
put all the signal power into the channel with less noise until the total power of noise
+ signal in that channel equals the noise power in the other channel. After that, we
will split any additional power evenly between the two channels.

Thus the combined channel begins to behave like a pair of parallel channels when the
signal power is equal to the difference of the two noise powers, i.e., when 2P = σ2

1−σ2
2.

(b) Since we are interested in the asymptotics P/σ2
1 −→∞ without loss of generality we

assume the waterpouring level to be greater than σ2
1. Hence Pi = λ− σ2

i , i = 1, 2. It
follows that

C1(P )− C2(P ) =
1

2
log

(
1 +

P1

σ2
1

)
+

1

2
log

(
1 +

P2

σ2
2

)
− 1

2
log

(
1 +

P

σ2
1

)
− 1

2
log

(
1 +

P

σ2
2

)
=

1

2
log

(
λ

σ2
1

)
+

1

2
log

(
λ

σ2
2

)
− 1

2
log

(
1 +

P

σ2
1

)
− 1

2
log

(
1 +

P

σ2
2

)
Now

1

2
log

(
1 +

P

σ2
1

)
=

1

2
log

(
1 +

P1

σ2
1

+
P − P1

σ2
1

)
=

1

2
log

(
λ

σ2
1

+
P − P1

σ2
1

)
and similarly

1

2
log

(
1 +

P

σ2
2

)
=

1

2
log

(
λ

σ2
2

+
P − P2

σ2
2

)
=

1

2
log

(
λ

σ2
2

− P − P1

σ2
2

)
.

We then deduce that

C1(P )− C2(P ) =
1

2
log

(
λ

σ2
1

)
+

1

2
log

(
λ

σ2
2

)
− 1

2
log

(
λ

σ2
1

+
P − P1

σ2
1

)
− 1

2
log

(
λ

σ2
2

− P − P1

σ2
2

)
= −1

2
log

(
1 +

P − P1

λ

)
− 1

2
log

(
1− P − P1

λ

)
.

We conclude by showing that P−P1

λ
tends to zero as P/σ2

1 tends to infinity. Since
Pi = λ− σ2

i , i = 1, 2, and since 2P = 2λ− σ2
1 − σ2

2, we have that

P − P1

λ
=

P − (λ− σ2
1)

λ

=
σ2

1 − σ2
2

2P + σ2
1 + σ2

2

.
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We have that
σ2
1−σ2

2

2P+σ2
1+σ2

2
tends to zero as P/σ2

1 tends to infinity. This gives the desired

result.

Problem 4. (a) All rates less than 1
2
log2(1 + P

σ2 ) are achievable.

(b) The new noise Z1 − ρZ2 has zero mean and variance E((Z1 − Z2)
2) = σ2(1 − ρ2).

Therefore, all rates less than 1
2
log2(1 + P

σ2(1−ρ2)
) are achievable.

(c) The capacity is C = max I(X; Y1, Y2) = max(h(Y1, Y2) − h(Z1, Z2)) = 1
2
log2(1 +

P
σ2(1−ρ2)

). This shows that the scheme used in (b) is a way to achieve capacity.

Problem 5. First Method:

(a) It suffices to note that H(X|Y ) = H(X + f(Y )|Y ) for any function f .

(b) Since among all random variables with a given variance the gaussian maximizes the
entropy, we have

H(X − αY ) ≤ 1

2
log 2πeE((X − αY )2) .

(c) From (a) and (b) we have

I(X; Y ) = H(X)−H(X − αY |Y )

≥ H(X)−H(X − αY )

≥ H(X)− 1

2
log 2πeE((X − αY )2) .

(d) We have that dE((X−αY )2)
dα

= 0 is equivalent to E(Y (X−αY )) = 0. Hence dE((X−αY )2)
dα

is equal to zero for α = α∗ = E(XY )
E(Y 2)

. Now on the one hand E(XY ) = E(X(X +Z)) =

E(X2)+E(XZ) and because of the independence between X and Z and the fact that
Z has zero mean we have that E(XZ) = 0, and hence E(XY ) = P . On the other
hand E(Y 2) = E((X + Z)2) = E(X2) + 2E(XZ) + E(Z2) = P + 0 + σ2. Therefore
α∗ = P/(P + σ2).

Then observing that E((X−αY )2) is a convex function of α we deduce that E((X−
αY )2) is minimized for α = α∗. Finally an easy computation yields to E((X −
α∗Y )2) = σ2P

σ2+P
.

(e) The lower bound for I(X; Y ) in part (c) holds for all values of α. In particular, it
holds for α = α∗. Since X is gaussian from (c) and (d) we deduce that

I(X; Y ) ≥ 1

2
log 2πeP − 1

2
log 2πe

σ2P

σ2 + P

=
1

2
log

(
1 +

P

σ2

)
. (1)

with equality if and only if Z is gaussian with covariance σ2.

Second Method:

(a) This is by the definition of mutual information once we note that pY |X(y|x) = pZ(y−
x).
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(b) Note that pX(x)pZ(y − x) is simply the joint distribution of (x, y), and thus the
integral ∫∫

pX(x)pZ(y − x) ln
Nσ2(y − x)

Nσ2+P (y)
dxdy.

is an expectation, namely

E ln
Nσ2(Y −X)

Nσ2+P (Y )
.

Substituting the formula for N , this in turn, is

E ln
Nσ2(Y −X)

Nσ2+P (Y )

=
1

2
ln

(
1 + P/σ2

)
+

1

2(σ2 + P )
E[Y 2]− 1

2σ2
E[(Y −X)2]

=
1

2
ln

(
1 + P/σ2

)
+

1

2(σ2 + P )
E[(X + Z)2]− 1

2σ2
E[Z2]

=
1

2
ln

(
1 + P/σ2

)
+

1

2(σ2 + P )
E[X2 + Z2 + 2XZ]− 1

2

=
1

2
ln

(
1 + P/σ2

)
+

1

2(σ2 + P )
(P + σ2 + 0)− 1

2

=
1

2
ln

(
1 + P/σ2

)
(c) The steps we need to justify read

1

2
ln(1 + P/σ2)− I(X; Y ) =

∫∫
pX(x)pZ(y − x) ln

Nσ2(y − x)pY (y)

Nσ2+P (y)pZ(y − x)
dxdy

≤
∫∫

pX(x)Nσ2(y − x)pY (y)

Nσ2+P (y)
dxdy − 1

=

∫
pY (y) dy − 1

= 0.

The first equality is by substitution of parts (a) and (b). The inequality is by ln(x) ≤
x− 1. The next equality is by noting that∫

pX(x)Nσ2(y − x)dx = (pX ∗ Nσ2)(y) = (NP ∗ Nσ2)(y) = NP+σ2(y).

The last equality is because any density function integrates to 1.

(d) The conclusion is made by noting that the right hand side of the first equality in (c)
is equal to zero if pZ = Nσ2 .

Problem 6.

(a) We have

I(X; Y ) = h(Y )− h(Y |X) = h(Y )− h(Z|X) = h(Y )− h(Z).

where the last equality is because Z is independent of X.
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(b) In the natural log basis,

h(Z) = −
∫

fZ(z) ln fZ(z) dz =

∫ ∞

0

ze−z dz = 1 nats.

(c) Since Y = X +Z, the expectation of Y , E[Y ] equals E[X]+E[Z]. Since E[X] is con-
strained to be less than or equal to P and E[Z] = 1, we see that E[Y ] ≤ P +1. Since
X is constrained to be non-negative and so is Z, we see that Y is also constrained to
be non-negative.
From problem 2 we know that among non-negative random variables of a given ex-
pectation λ, the one with density p(y) = e−y/λ/λ has the largest differential entropy.
This differential entropy in natural units is∫ ∞

0

e−y/λ

λ
[ln λ + y/λ] dy = ln λ + 1 nats.

Thus, the differential entropy of Y is less than 1 + ln E[Y ] ≤ 1 + ln(1 + P ), which
implies

C ≤ ln(1 + P ) nats

At this point, we do not know if Y can be made to have an exponential distribution
with mean 1 + P so we cannot know if this above inequality is an equality or not.

(d) The Laplace transform of the random variable Y is E(esY ) = E(es(X+Z)) = E(esX)E(esZ),
where the latter equality follows from the independence of X and Z. Therefore we

have that E(esX) = E(esY )
E(esZ)

. Computing E(esY ),

E(esY ) =

∫ ∞

∞
esyfY (y)dy

=

∫ ∞

0

esyµe−µydy

=
µ

µ− s
∀s ≤ µ

The expectation is not defined for s > µ (as the integral blows up). Likewise, we
evaluate E(esZ) = 1

1−s
(defined for s ≤ 1). Therefore for s ≤ min(1, µ), we can

evaluate E(esX) as

E(esX) =
E(esY )

E(esZ)

= µ
1− s

µ− s

= µ + (1− µ)
µ

µ− s

Inverting the Laplace transform E(esX) gives us the distribution of the X that gives
an exponential distribution for Y . From inspection, we can deduce this distribution
of X to be

fX(x) = µδ(x) + (1− µ)µe−µx x ≥ 0

Notice that the distribution is a convex combination of the exponential distribution
and the distribution that puts all the mass on one point (in this case the point x = 0).
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(e) By taking µ = 1/(1 + P ), we see that there is a density on X which makes the
density of Y an exponential with mean 1+P . Furthermore, this density on X makes
X non-negative, and, E[X] = E[Y ]−E[Z] = P . Thus, the bound of part (c) can be
achieved.
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