ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 19
Information Theory and Coding
Solutions to homework 8

Problem 1. (a)

$$
Y_{i}=X_{i} \oplus Z_{i}
$$

where

$$
Z_{i}= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

and Z_{i} are not necessarily independent.

$$
\begin{aligned}
I\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right) & =H\left(X_{1}, \ldots, X_{n}\right)-H\left(X_{1}, \ldots, X_{n} \mid Y_{1}, \ldots, Y_{n}\right) \\
& =H\left(X_{1}, \ldots, X_{n}\right)-H\left(Z_{1}, \ldots, Z_{n} \mid Y_{1}, \ldots, Y_{n}\right) \\
& \geq H\left(X_{1}, \ldots, X_{n}\right)-H\left(Z_{1}, \ldots, Z_{n}\right) \\
& \geq H\left(X_{1}, \ldots, X_{n}\right)-\sum H\left(Z_{i}\right) \\
& =H\left(X_{1}, \ldots, X_{n}\right)-n H(p) \\
& =n-n H(p),
\end{aligned}
$$

if X_{1}, \ldots, X_{n} are chosen i.i.d. $\sim \operatorname{Bern}(1 / 2)$. The capacity of the channel with memory over n uses of the channel is

$$
\begin{aligned}
n C^{(n)} & =\max _{p\left(x_{1}, \ldots, x_{n}\right)} I\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right) \\
& \geq I\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)_{p\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Bern}(1 / 2)} \\
& \geq n(1-H(p)) \\
& =n C .
\end{aligned}
$$

Hence channels with memory have higher capacity. The intuitive explanation for this result is that the correlation between the noise decreases the effective noise; one could use the information from the past samples of the noise to combat the present noise.
(b) (i) We will prove by induction that $\forall i, \operatorname{Pr}\left(Z_{i}=1\right)=\frac{1}{2}$. Notice that the result holds for $i=1$ (from assumption). Assuming the result holds true for all Z_{i}, $1 \leq i \leq k-1$, we have that

$$
\begin{aligned}
\operatorname{Pr}\left(Z_{k}=1\right) & =\operatorname{Pr}\left(Z_{k}=1, Z_{k-1}=0\right)+\operatorname{Pr}\left(Z_{k}=1, Z_{k-1}=1\right) \\
& =\operatorname{Pr}\left(Z_{k}=1 \mid Z_{k-1}=0\right) \operatorname{Pr}\left(Z_{k-1}=0\right)+\operatorname{Pr}\left(Z_{k}=1 \mid Z_{k-1}=1\right) \operatorname{Pr}\left(Z_{k-1}=1\right) \\
& =q\left(\frac{1}{2}\right)+(1-q) \frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

(ii) The (a) follows from the fact that Z_{1}^{n} is a deterministic function of the X_{1}^{n}, Y_{1}^{n} and that Y_{1}^{n} is again a deterministic function of the X_{1}^{n}, Z_{1}^{n}. Therefore we have

$$
\begin{aligned}
H\left(Y_{1}^{n}, Z_{1}^{n} \mid X_{1}^{n}\right) & =H\left(Y_{1}^{n} \mid X_{1}^{n}\right)+H\left(Z_{1}^{n} \mid X_{1}^{n}, Y_{1}^{n}\right) \\
& =H\left(Y_{1}^{n} \mid X_{1}^{n}\right)
\end{aligned}
$$

Expanding the term $H\left(Y_{1}^{n}, Z_{1}^{n} \mid X_{1}^{n}\right)$ once again in the other way

$$
\begin{aligned}
H\left(Y_{1}^{n}, Z_{1}^{n} \mid X_{1}^{n}\right) & =H\left(Z_{1}^{n} \mid X_{1}^{n}\right)+H\left(Y_{1}^{n} \mid X_{1}^{n}, Z_{1}^{n}\right) \\
& =H\left(Z_{1}^{n} \mid X_{1}^{n}\right)
\end{aligned}
$$

So $H\left(Y_{1}^{n} \mid X_{1}^{n}\right)=H\left(Z_{1}^{n} \mid X_{1}^{n}\right)$. Furthermore, since Z_{1}^{n} is independent of the input sequence X_{1}^{n}, we have that $H\left(Y_{1}^{n} \mid X_{1}^{n}\right)=H\left(Z_{1}^{n}\right)$.

The (b) follows from the chain rule for expanding the joint entropy and from the Markov property of the Z_{1}^{n} sequence.

$$
\begin{aligned}
H\left(Z_{1}^{n}\right) & =H\left(Z_{1}\right)+\sum_{1}^{n} H\left(Z_{i+1} \mid Z_{1}, \ldots, Z_{i}\right) \\
& =H\left(Z_{1}\right)+\sum_{1}^{n} H\left(Z_{i+1} \mid Z_{i}\right)
\end{aligned}
$$

The (c) follows since $H\left(Y_{1}, \ldots, Y_{n}\right) \leq \sum_{1}^{n} H\left(Y_{i}\right) \leq n$. Here, the last inequality follows since the Y_{i} 's are binary random variables. Note: The evaluation of the entropy is made in bits (base $\log 2$).

The upper bound can be achieved if we find a distribution on X_{1}^{n} that gives an i.i.d. $\sim \operatorname{Bern}\left(\frac{1}{2}\right)$ distribution on the output Y_{1}^{n}. This distribution is again the i.i.d. $\sim \operatorname{Bern}\left(\frac{1}{2}\right)$ distribution i.e., $p\left(X_{1}^{n}\right)=\prod_{1}^{n} p\left(X_{i}\right)$ where p is the $\operatorname{Bernoulli}\left(\frac{1}{2}\right)$ distribution.

Problem 2. To find the capacity of the product channel, we must find the distribution $p\left(x_{1}, x_{2}\right)$ on the input alphabet $\mathcal{X}_{1} \times \mathcal{X}_{2}$ that maximizes $I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right)$. Since the joint distribution

$$
p\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=p\left(x_{1}, x_{2}\right) p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right)
$$

$Y_{1} \rightarrow X_{1} \rightarrow X_{2} \rightarrow Y_{2}$ forms a Markov chain and therefore

$$
\begin{align*}
I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) & =H\left(Y_{1}, Y_{2}\right)-H\left(Y_{1}, Y_{2} \mid X_{1}, X_{2}\right) \tag{1}\\
& =H\left(Y_{1}, Y_{2}\right)-H\left(Y_{1} \mid X_{1}, X_{2}\right)-H\left(Y_{2} \mid X_{1}, X_{2}\right) \tag{2}\\
& =H\left(Y_{1}, Y_{2}\right)-H\left(Y_{1} \mid X_{1}\right)-H\left(Y_{2} \mid X_{2}\right) \tag{3}\\
& \leq H\left(Y_{1}\right)+H\left(Y_{2}\right)-H\left(Y_{1} \mid X_{1}\right)-H\left(Y_{2} \mid X_{2}\right) \tag{4}\\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right), \tag{5}
\end{align*}
$$

where (2) and (3) follow from Markovity, and we have equality in (4) if Y_{1} and Y_{2} are independent. Equality occurs when X_{1} and X_{2} are independent. Hence

$$
\begin{aligned}
C & =\max _{p\left(x_{1}, x_{2}\right)} I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) \\
& \leq \max _{p\left(x_{1}, x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+\max _{p\left(x_{1}, x_{2}\right)} I\left(X_{2} ; Y_{2}\right) \\
& =\max _{p\left(x_{1}\right)} I\left(X_{1} ; Y_{1}\right)+\max _{p\left(x_{2}\right)} I\left(X_{2} ; Y_{2}\right) \\
& =C_{1}+C_{2} .
\end{aligned}
$$

with equality iff $p\left(x_{1}, x_{2}\right)=p^{*}\left(x_{1}\right) p^{*}\left(x_{2}\right)$ and $p^{*}\left(x_{1}\right)$ and $p^{*}\left(x_{2}\right)$ are the distributions for which $C_{1}=I\left(X_{1} ; Y_{2}\right)$ and $C_{2}=I\left(X_{2} ; Y_{2}\right)$ respectively.

Problem 3. The assertion is clearly true with $n=1$. To complete the proof by induction we need to show that the cascade of a BSC with parameter $q=\frac{1}{2}\left(1-(1-2 p)^{n}\right)$ with a BSC with parameter p is equivalent to a BSC with parameter $\frac{1}{2}\left(1-(1-2 p)^{n+1}\right)$. To do so, observe that for a cascade of a BSC with parameter q and a BSC with parameter p, when a bit is sent, the opposite bit will be received if exactly one of the channels makes a flip, and this happens with probability $(1-q) p+(1-p) q$. Thus, the cascade is equivalent to a BSC with this parameter. For $q=\frac{1}{2}\left(1-(1-2 p)^{n}\right)$,

$$
(1-q) p+(1-p) q=\frac{1}{2}\left(1+(1-2 p)^{n}\right) p+\frac{1}{2}\left(1-(1-2 p)^{n}\right)(1-p)=\frac{1}{2}\left(1-(1-2 p)^{n+1}\right)
$$

and the assertion is proved.
Alternate proof: the cascade makes flips the incoming bit if an odd number of the elements of the cascade flip. Thus the cascade is equivalent to a BSC with parameter

$$
a=\sum_{k: k \text { odd }}\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Let $b=\sum_{k: k \text { even }}\binom{n}{k} p^{k}(1-p)^{n-k}$. Observe that

$$
a+b=\sum_{k}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1
$$

and

$$
-a+b=\sum_{k}\binom{n}{k}(-p)^{k}(1-p)^{n-k}=(-p+1-p)^{n}=(1-2 p)^{n}
$$

Subtracting the two equalities and dividing by two, we get $a=\frac{1}{2}\left(1+(1-2 p)^{n}\right)$.
Problem 4. Let $P_{X, Y}^{\prime}(x, y)=P_{Y \mid X}(y \mid x) Q^{\prime}(x), P_{Y}^{\prime}(y)=\sum_{x \in \mathcal{X}} P_{X, Y}^{\prime}(x, y)$ and $P_{Y}(y)=$ $\sum_{x \in \mathcal{X}} P_{Y \mid X}(y \mid x) Q(x)$. We then have for any Q^{\prime}

$$
\begin{aligned}
& \sum_{x \in \mathcal{X}} Q^{\prime}(x) \sum_{y \in \mathcal{Y}} P_{Y \mid X}(y \mid x) \log \left(\frac{P_{Y \mid X}(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} P_{Y \mid X}\left(y \mid x^{\prime}\right) Q\left(x^{\prime}\right)}\right)-I\left(Q^{\prime}\right) \\
& =E_{P_{X, Y}^{\prime}} \log \frac{P_{Y \mid X}}{P_{Y}}-I\left(Q^{\prime}\right) \\
& =E_{P_{X, Y}^{\prime}}\left(\log \frac{P_{Y \mid X}}{P_{Y}}-\log \frac{P_{X, Y}^{\prime}}{Q_{X}^{\prime} P_{Y}^{\prime}}\right) \\
& =E_{P_{X, Y}^{\prime}} \log \frac{P_{Y}^{\prime}}{P_{Y}} \\
& =E_{P_{Y}^{\prime}} \log \frac{P_{Y}^{\prime}}{P_{Y}} \\
& =D\left(P_{Y}^{\prime} \| P_{Y}\right) \geq 0
\end{aligned}
$$

with equality if and only if $Q^{\prime}=Q$. To prove (b), notice in the upper bound of part (a), that the inner summation is a function of x and that the outer summation is an average of this function with respect to the distribution $Q^{\prime}(x)$. The average of a function is upper bounded by the maximum value that the function takes, and hence (b) follows.

