ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 19	Information Theory and Coding
Solutions to homework 8	November 28, 2007

PROBLEM 1. (a)

 $Y_i = X_i \oplus Z_i,$

where

$$Z_i = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

and Z_i are not necessarily independent.

$$I(X_{1},...,X_{n};Y_{1},...,Y_{n}) = H(X_{1},...,X_{n}) - H(X_{1},...,X_{n}|Y_{1},...,Y_{n})$$

= $H(X_{1},...,X_{n}) - H(Z_{1},...,Z_{n}|Y_{1},...,Y_{n})$
 $\geq H(X_{1},...,X_{n}) - H(Z_{1},...,Z_{n})$
 $\geq H(X_{1},...,X_{n}) - \sum H(Z_{i})$
= $H(X_{1},...,X_{n}) - nH(p)$
= $n - nH(p)$,

if X_1, \ldots, X_n are chosen i.i.d. ~ Bern(1/2). The capacity of the channel with memory over n uses of the channel is

$$nC^{(n)} = \max_{p(x_1,...,x_n)} I(X_1,...,X_n;Y_1,...,Y_n)$$

$$\geq I(X_1,...,X_n;Y_1,...,Y_n)_{p(x_1,...,x_n)=\text{Bern}(1/2)}$$

$$\geq n(1-H(p))$$

$$= nC.$$

Hence channels with memory have higher capacity. The intuitive explanation for this result is that the correlation between the noise decreases the effective noise; one could use the information from the past samples of the noise to combat the present noise.

(b) (i) We will prove by induction that $\forall i$, $\Pr(Z_i = 1) = \frac{1}{2}$. Notice that the result holds for i = 1 (from assumption). Assuming the result holds true for all Z_i , $1 \le i \le k - 1$, we have that

$$\Pr(Z_k = 1) = \Pr(Z_k = 1, Z_{k-1} = 0) + \Pr(Z_k = 1, Z_{k-1} = 1)$$

=
$$\Pr(Z_k = 1 | Z_{k-1} = 0) \Pr(Z_{k-1} = 0) + \Pr(Z_k = 1 | Z_{k-1} = 1) \Pr(Z_{k-1} = 1)$$

=
$$q(\frac{1}{2}) + (1 - q)\frac{1}{2}$$

=
$$\frac{1}{2}$$

(ii) The (a) follows from the fact that Z_1^n is a deterministic function of the X_1^n, Y_1^n and that Y_1^n is again a deterministic function of the X_1^n, Z_1^n . Therefore we have

$$H(Y_1^n, Z_1^n | X_1^n) = H(Y_1^n | X_1^n) + H(Z_1^n | X_1^n, Y_1^n)$$

= $H(Y_1^n | X_1^n)$

Expanding the term $H(Y_1^n, Z_1^n | X_1^n)$ once again in the other way

$$H(Y_1^n, Z_1^n | X_1^n) = H(Z_1^n | X_1^n) + H(Y_1^n | X_1^n, Z_1^n)$$

= $H(Z_1^n | X_1^n)$

So $H(Y_1^n|X_1^n) = H(Z_1^n|X_1^n)$. Furthermore, since Z_1^n is independent of the input sequence X_1^n , we have that $H(Y_1^n|X_1^n) = H(Z_1^n)$.

The (b) follows from the chain rule for expanding the joint entropy and from the Markov property of the Z_1^n sequence.

$$H(Z_1^n) = H(Z_1) + \sum_{i=1}^{n} H(Z_{i+1}|Z_1, \dots, Z_i)$$
$$= H(Z_1) + \sum_{i=1}^{n} H(Z_{i+1}|Z_i)$$

The (c) follows since $H(Y_1, \ldots, Y_n) \leq \sum_{i=1}^{n} H(Y_i) \leq n$. Here, the last inequality follows since the Y_i 's are binary random variables. Note: The evaluation of the entropy is made in bits (base log 2).

The upper bound can be achieved if we find a distribution on X_1^n that gives an i.i.d. ~ Bern($\frac{1}{2}$) distribution on the output Y_1^n . This distribution is again the i.i.d. ~ Bern($\frac{1}{2}$) distribution i.e., $p(X_1^n) = \prod_{i=1}^{n} p(X_i)$ where p is the Bernoulli($\frac{1}{2}$) distribution.

PROBLEM 2. To find the capacity of the product channel, we must find the distribution $p(x_1, x_2)$ on the input alphabet $\mathcal{X}_1 \times \mathcal{X}_2$ that maximizes $I(X_1, X_2; Y_1, Y_2)$. Since the joint distribution

$$p(x_1, x_2, y_1, y_2) = p(x_1, x_2)p(y_1|x_1)p(y_2|x_2),$$

 $Y_1 \to X_1 \to X_2 \to Y_2$ forms a Markov chain and therefore

$$I(X_1, X_2; Y_1, Y_2) = H(Y_1, Y_2) - H(Y_1, Y_2 | X_1, X_2)$$
(1)

$$= H(Y_1, Y_2) - H(Y_1|X_1, X_2) - H(Y_2|X_1, X_2)$$
(2)

$$= H(Y_1, Y_2) - H(Y_1|X_1) - H(Y_2|X_2)$$
(3)

$$\leq H(Y_1) + H(Y_2) - H(Y_1|X_1) - H(Y_2|X_2) \tag{4}$$

$$= I(X_1; Y_1) + I(X_2; Y_2), (5)$$

where (2) and (3) follow from Markovity, and we have equality in (4) if Y_1 and Y_2 are independent. Equality occurs when X_1 and X_2 are independent. Hence

$$C = \max_{p(x_1, x_2)} I(X_1, X_2; Y_1, Y_2)$$

$$\leq \max_{p(x_1, x_2)} I(X_1; Y_1) + \max_{p(x_1, x_2)} I(X_2; Y_2)$$

$$= \max_{p(x_1)} I(X_1; Y_1) + \max_{p(x_2)} I(X_2; Y_2)$$

$$= C_1 + C_2.$$

with equality iff $p(x_1, x_2) = p^*(x_1)p^*(x_2)$ and $p^*(x_1)$ and $p^*(x_2)$ are the distributions for which $C_1 = I(X_1; Y_2)$ and $C_2 = I(X_2; Y_2)$ respectively.

PROBLEM 3. The assertion is clearly true with n = 1. To complete the proof by induction we need to show that the cascade of a BSC with parameter $q = \frac{1}{2}(1 - (1 - 2p)^n)$ with a BSC with parameter p is equivalent to a BSC with parameter $\frac{1}{2}(1 - (1 - 2p)^{n+1})$. To do so, observe that for a cascade of a BSC with parameter q and a BSC with parameter p, when a bit is sent, the opposite bit will be received if exactly one of the channels makes a flip, and this happens with probability (1 - q)p + (1 - p)q. Thus, the cascade is equivalent to a BSC with this parameter. For $q = \frac{1}{2}(1 - (1 - 2p)^n)$,

$$(1-q)p + (1-p)q = \frac{1}{2}(1 + (1-2p)^n)p + \frac{1}{2}(1 - (1-2p)^n)(1-p) = \frac{1}{2}(1 - (1-2p)^{n+1}),$$

and the assertion is proved.

Alternate proof: the cascade makes flips the incoming bit if an odd number of the elements of the cascade flip. Thus the cascade is equivalent to a BSC with parameter

$$a = \sum_{k:k \text{ odd}} \binom{n}{k} p^k (1-p)^{n-k}.$$

Let $b = \sum_{k:k \text{ even}} {n \choose k} p^k (1-p)^{n-k}$. Observe that

$$a + b = \sum_{k} {n \choose k} p^{k} (1 - p)^{n-k} = (p + (1 - p))^{n} = 1,$$

and

$$-a+b = \sum_{k} \binom{n}{k} (-p)^{k} (1-p)^{n-k} = (-p+1-p)^{n} = (1-2p)^{n}.$$

Subtracting the two equalities and dividing by two, we get $a = \frac{1}{2}(1 + (1 - 2p)^n)$.

PROBLEM 4. Let $P'_{X,Y}(x,y) = P_{Y|X}(y|x)Q'(x)$, $P'_Y(y) = \sum_{x \in \mathcal{X}} P'_{X,Y}(x,y)$ and $P_Y(y) = \sum_{x \in \mathcal{X}} P_{Y|X}(y|x)Q(x)$. We then have for any Q'

$$\begin{split} \sum_{x \in \mathcal{X}} Q'(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x')Q(x')} \right) - I(Q') \\ &= E_{P'_{X,Y}} \log \frac{P_{Y|X}}{P_Y} - I(Q') \\ &= E_{P'_{X,Y}} \left(\log \frac{P_{Y|X}}{P_Y} - \log \frac{P'_{X,Y}}{Q'_X P'_Y} \right) \\ &= E_{P'_{X,Y}} \log \frac{P'_Y}{P_Y} \\ &= E_{P'_Y} \log \frac{P'_Y}{P_Y} \\ &= D(P'_Y||P_Y) \ge 0 \end{split}$$

with equality if and only if Q' = Q. To prove (b), notice in the upper bound of part (a), that the inner summation is a function of x and that the outer summation is an average of this function with respect to the distribution Q'(x). The average of a function is upper bounded by the maximum value that the function takes, and hence (b) follows.