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Problem 1. (a)
Yi = Xi ⊕ Zi,

where

Zi =

{
1 with probability p
0 with probability 1− p

and Zi are not necessarily independent.

I(X1, . . . , Xn; Y1, . . . , Yn) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y1, . . . , Yn)

= H(X1, . . . , Xn)−H(Z1, . . . , Zn|Y1, . . . , Yn)

≥ H(X1, . . . , Xn)−H(Z1, . . . , Zn)

≥ H(X1, . . . , Xn)−
∑

H(Zi)

= H(X1, . . . , Xn)− nH(p)

= n− nH(p),

if X1, . . . , Xn are chosen i.i.d. ∼ Bern(1/2). The capacity of the channel with memory
over n uses of the channel is

nC(n) = max
p(x1,...,xn)

I(X1, . . . , Xn; Y1, . . . , Yn)

≥ I(X1, . . . , Xn; Y1, . . . , Yn)p(x1,...,xn)=Bern(1/2)

≥ n(1−H(p))

= nC.

Hence channels with memory have higher capacity. The intuitive explanation for this
result is that the correlation between the noise decreases the effective noise; one could
use the information from the past samples of the noise to combat the present noise.

(b) (i) We will prove by induction that ∀i, Pr(Zi = 1) = 1
2
. Notice that the result

holds for i = 1 (from assumption). Assuming the result holds true for all Zi,
1 ≤ i ≤ k − 1, we have that

Pr(Zk = 1) = Pr(Zk = 1, Zk−1 = 0) + Pr(Zk = 1, Zk−1 = 1)

= Pr(Zk = 1|Zk−1 = 0) Pr(Zk−1 = 0) + Pr(Zk = 1|Zk−1 = 1) Pr(Zk−1 = 1)

= q(
1

2
) + (1− q)

1

2

=
1

2

(ii) The (a) follows from the fact that Zn
1 is a deterministic function of the Xn

1 , Y n
1

and that Y n
1 is again a deterministic function of the Xn

1 , Zn
1 . Therefore we have

H(Y n
1 , Zn

1 |Xn
1 ) = H(Y n

1 |Xn
1 ) + H(Zn

1 |Xn
1 , Y n

1 )

= H(Y n
1 |Xn

1 )



Expanding the term H(Y n
1 , Zn

1 |Xn
1 ) once again in the other way

H(Y n
1 , Zn

1 |Xn
1 ) = H(Zn

1 |Xn
1 ) + H(Y n

1 |Xn
1 , Zn

1 )

= H(Zn
1 |Xn

1 )

So H(Y n
1 |Xn

1 ) = H(Zn
1 |Xn

1 ). Furthermore, since Zn
1 is independent of the input

sequence Xn
1 , we have that H(Y n

1 |Xn
1 ) = H(Zn

1 ).

The (b) follows from the chain rule for expanding the joint entropy and from the
Markov property of the Zn

1 sequence.

H(Zn
1 ) = H(Z1) +

n∑
1

H(Zi+1|Z1, . . . , Zi)

= H(Z1) +
n∑
1

H(Zi+1|Zi)

The (c) follows since H(Y1, . . . , Yn) ≤
∑n

1 H(Yi) ≤ n. Here, the last inequality
follows since the Yi’s are binary random variables. Note: The evaluation of the
entropy is made in bits (base log 2).

The upper bound can be achieved if we find a distribution on Xn
1 that gives an

i.i.d. ∼ Bern(1
2
) distribution on the output Y n

1 . This distribution is again the
i.i.d. ∼ Bern(1

2
) distribution i.e., p(Xn

1 ) =
∏n

1 p(Xi) where p is the Bernoulli(1
2
)

distribution.

Problem 2. To find the capacity of the product channel, we must find the distribution
p(x1, x2) on the input alphabet X1 × X2 that maximizes I(X1, X2; Y1, Y2). Since the joint
distribution

p(x1, x2, y1, y2) = p(x1, x2)p(y1|x1)p(y2|x2),

Y1 → X1 → X2 → Y2 forms a Markov chain and therefore

I(X1, X2; Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2) (1)

= H(Y1, Y2)−H(Y1|X1, X2)−H(Y2|X1, X2) (2)

= H(Y1, Y2)−H(Y1|X1)−H(Y2|X2) (3)

≤ H(Y1) + H(Y2)−H(Y1|X1)−H(Y2|X2) (4)

= I(X1; Y1) + I(X2; Y2), (5)

where (2) and (3) follow from Markovity, and we have equality in (4) if Y1 and Y2 are
independent. Equality occurs when X1 and X2 are independent. Hence

C = max
p(x1,x2)

I(X1, X2; Y1, Y2)

≤ max
p(x1,x2)

I(X1; Y1) + max
p(x1,x2)

I(X2; Y2)

= max
p(x1)

I(X1; Y1) + max
p(x2)

I(X2; Y2)

= C1 + C2.

with equality iff p(x1, x2) = p∗(x1)p
∗(x2) and p∗(x1) and p∗(x2) are the distributions for

which C1 = I(X1; Y2) and C2 = I(X2; Y2) respectively.
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Problem 3. The assertion is clearly true with n = 1. To complete the proof by induction
we need to show that the cascade of a BSC with parameter q = 1

2
(1 − (1 − 2p)n) with a

BSC with parameter p is equivalent to a BSC with parameter 1
2
(1− (1−2p)n+1). To do so,

observe that for a cascade of a BSC with parameter q and a BSC with parameter p, when
a bit is sent, the opposite bit will be received if exactly one of the channels makes a flip,
and this happens with probability (1 − q)p + (1 − p)q. Thus, the cascade is equivalent to
a BSC with this parameter. For q = 1

2
(1− (1− 2p)n),

(1− q)p + (1− p)q =
1

2
(1 + (1− 2p)n)p +

1

2
(1− (1− 2p)n)(1− p) =

1

2
(1− (1− 2p)n+1),

and the assertion is proved.
Alternate proof: the cascade makes flips the incoming bit if an odd number of the

elements of the cascade flip. Thus the cascade is equivalent to a BSC with parameter

a =
∑

k:k odd

(
n

k

)
pk(1− p)n−k.

Let b =
∑

k:k even

(
n
k

)
pk(1− p)n−k. Observe that

a + b =
∑

k

(
n

k

)
pk(1− p)n−k = (p + (1− p))n = 1,

and

−a + b =
∑

k

(
n

k

)
(−p)k(1− p)n−k = (−p + 1− p)n = (1− 2p)n.

Subtracting the two equalities and dividing by two, we get a = 1
2
(1 + (1− 2p)n).

Problem 4. Let P ′
X,Y (x, y) = PY |X(y|x)Q′(x), P ′

Y (y) =
∑

x∈X P ′
X,Y (x, y) and PY (y) =∑

x∈X PY |X(y|x)Q(x). We then have for any Q′

∑
x∈X

Q′(x)
∑
y∈Y

PY |X(y|x) log

(
PY |X(y|x)∑

x′∈X PY |X(y|x′)Q(x′)

)
− I(Q′)

= EP ′
X,Y

log
PY |X

PY

− I(Q′)

= EP ′
X,Y

(
log

PY |X

PY

− log
P ′

X,Y

Q′
XP ′

Y

)
= EP ′

X,Y
log

P ′
Y

PY

= EP ′
Y

log
P ′

Y

PY

= D(P ′
Y ||PY ) ≥ 0

with equality if and only if Q′ = Q. To prove (b), notice in the upper bound of part (a),
that the inner summation is a function of x and that the outer summation is an average
of this function with respect to the distribution Q′(x). The average of a function is upper
bounded by the maximum value that the function takes, and hence (b) follows.
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