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School of Computer and Communication Sciences

Handout 17 Information Theory and Coding
Solutions to homework 7 November 26, 2007

Problem 1.

(a) Observe that with P3 defined as in the problem, whatever distribution we choose for
X, the random variables X, Y, Z form a Markov chain, i.e., given Y , the random
variables X and Z are independent. The data processing theorem then yields:

I(X; Z) ≤ I(X; Y ) ≤ C1

I(X; Z) ≤ I(Y ; Z) ≤ C2

and thus I(X; Z) ≤ min{C1, C2} for any distribution on X. We then conclude that
C3 = maxpX

I(X; Z) ≤ min{C1, C2}.

(b) The statistician calculates Ỹ = g(Y ).

(b1) Since X → Y → Ỹ forms a Markov chain, we can apply the data processing
inequality. Hence for every distribution on X,

I(X; Y ) ≥ I(X; Ỹ ).

Let p̃(x) be the distribution on x that maximizes I(X; Ỹ ). Then

C = max
p(x)

I(X; Y ) ≥ I(X; Y )p(x)=p̃(x) ≥ I(X; Ỹ )p(x)=p̃(x) = max
p(x)

I(X; Ỹ ) = C̃.

Thus, the statistician is wrong and processing the output does not increase
capacity.

(b2) We have equality (no decrease in capacity) in the above sequence of inequalities
only if we have equality in data processing inequality, i.e., for the distribution
that maximizes I(X; Ỹ ), we have X → Ỹ → Y forming a Markov chain, in
other words if given Ỹ , X and Y are independent.

Problem 2.
Y = X + Z X ∈ {0, 1}, Z ∈ {0, a}

We have to distinguish various cases depending on the values of a.

a = 0 In this case, Y = X, and max I(X; Y ) = max H(X) = 1. Hence the capacity is 1
bit per transmission.

a 6= 0,±1 In this case, Y has four possible values 0, 1, a and 1+a. Knowing Y , we know the
X which was sent, and hence H(X|Y ) = 0. Hence max I(X; Y ) = max H(X) = 1,
achieved for an uniform distribution on the input X.

a = ±1 In the case a = 1, Y has three possible output values, 0, 1 and 2, and the channel
is identical to the binary erasure channel discussed in class, with ε = 1/2. As derived
in class, the capacity of this channel is 1− ε = 1/2 bit per transmission. The case of
a = −1 is essentially the same and the capacity here is also 1/2 bit per transmission.



Problem 3. Since given X, one can determine Y from Z and vice versa, H(Y |X) =
H(Z|X) = H(Z) = log 3, regardless of the distribution of X. Hence the capacity of the
channel is

C = max
pX

I(X; Y )

= max
pX

H(Y )−H(Y |X)

= log 11− log 3

which is attained when X has uniform distribution. The same result can also be seen by
observing that this channel is symmetric.

Problem 4.

(a) By Bayes rule, for any events A and B,

Pr(A|B) =
Pr(A) Pr(B|A)

Pr(B)
.

In this case, we wish to calculate the conditional probability of a1 given the channel
output. Thus we take the event A to the event that the source produced a1, and B to
be the event corresponding to one of the 8 possible output sequences. Thus Pr(A) =
1/2, and Pr(B|A) = εi(1−ε)3−i, where i is the number of ones in the received sequence.
Pr(B) can then be calculated as Pr(B) = Pr(a1) Pr(B|a1) + Pr(a2) Pr(B|a2). Thus
we can calculate

Pr(a1|000) =
1
2
(1− ε)3

1
2
(1− ε)3 + 1

2
ε3

Pr(a1|100) = Pr(a1|010) = Pr(a1|001) =
1
2
(1− ε)2ε

1
2
(1− ε)2ε + 1

2
ε2(1− ε)

Pr(a1|110) = Pr(a1|011) = Pr(a1|101) =
1
2
(1− ε)ε2

1
2
(1− ε)ε2 + 1

2
ε(1− ε)2

Pr(a1|111) =
1
2
ε3

1
2
ε3 + 1

2
(1− ε)3

(b) If ε < 1/2, then the probability of a1 given 000,001,010 or 100 is greater than 1/2,
and the probability of a2 given 110,011,101 or 111 is greater than 1/2. Therefore, the
decoding rule above chooses the source symbol that has maximum probability given
the observed output. This is the maximum a posteriori decoding rule, and is optimal
in that it minimizes the probability of error. To see that this is true, let the input
source symbol be X, let the output of the channel be denoted by Y and the decoded
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symbol be X̂(Y ). Then

Pr(E) = Pr(X 6= X̂)

=
∑

y

Pr(Y = y) Pr(X 6= X̂|Y = y)

=
∑

y

Pr(Y = y)
∑

x 6=x̂(y)

Pr(x|Y = y)

=
∑

y

Pr(Y = y) (1− Pr(x̂(y)|Y = y))

=
∑

y

Pr(Y = y)−
∑

y

Pr(Y = y) Pr(x̂(y)|Y = y)

= 1−
∑

y

Pr(Y = y) Pr(x̂(y)|Y = y)

and thus to minimize the probability of error, we have to maximize the second term,
which is maximized by choosing x̂(y) to the the symbol that maximizes the conditional
probability of the source symbol given the output.

(c) The probability of error can also be expanded

Pr(E) = Pr(X 6= X̂)

=
∑

x

Pr(x) Pr(X̂ 6= x)

= Pr(a1) Pr(Y = 011, 110, 101, or 111)

+ Pr(a2) Pr(Y = 000, 001, 010 or 100)

=
1

2

(
3ε2(1− ε) + ε3

)
+

1

2

(
3ε2(1− ε) + ε3

)
= 3ε2(1− ε) + ε3.

(d) By extending the same arguments, it is easy to see that the decoding rule that
minimizes the probability of error is the maximum a posteriori decoding rule, which
in this case is the same as the maximum likelihood decoding rule (since the two input
symbols are equally likely). So we choose the source symbol that is most likely to
have produced the given output. This corresponds to choosing a1 if the number of
1’s in the received sequence is n or less, and choosing a2 otherwise. The probability
of error is then equal to (by symmetry) the probability of error given that a1 was
sent, which is the probability that n + 1 or more 0’s have been changed to 1’s by the
channel. This probability is

Pr(E) =
2n+1∑
i=n+1

(
2n + 1

i

)
εi(1− ε)2n+1−i

This probability goes to 0 as n → ∞, since this is the probability that the number
of 1’s is n + 1 or more, and since the expected proportion of 1’s is nε < n + 1, by the
weak law of large numbers the above probability goes to 0 as n →∞.

Problem 5.
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First we express I(X; Y ), the mutual information between the input and output of the
Z-channel, as a function of x = Pr(X = 1):

H(Y |X) = xH(ε)

H(Y ) = H(Pr(Y = 1)) = H((1− ε)x)

I(X; Y ) = H(Y )−H(Y |X) = H((1− ε)x)− xH(ε) (1)

We deduce that if ε = 0, the capacity equals 1 bit/symbol and is attained for x = 1/2. If
ε = 1, then I(X; Y ) = 0 for every 0 ≤ x ≤ 1. Hence, the capacity is equal to zero and any
value of x achieves it. From now on we assume ε 6= 0, 1.

Using elementary calculus, we have that

d

dx
I(X; Y ) = (1− ε) log

(
1− (1− ε)x

(1− ε)x

)
−H(ε) .

Imposing the condition d
dx

I(X; Y ) = 0 yields to the unique solution

x∗(ε) =
(
(1− ε)(2

H(ε)
1−ε + 1)

)−1

.

From (1) we have I(X; Y ) = 0 for x = 0 and x = 1, and therefore the maximum of the
mutual information is achieved for x = x∗(ε). The capacity C(ε) is given by

C(ε) = H((1− ε)x∗(ε))− x∗(ε)H(ε) bits/symbol.
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