ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 8

Information Theory and Coding
Solutions to homework 4

Problem 1. Let $\mathcal{H}(p)=-p \log p-(1-p) \log p$ denote the entropy of a binary valued random variable with distribution $p, 1-p$. The entropy per symbol of the source is

$$
\mathcal{H}\left(p_{1}\right)=-p_{1} \log p_{1}-\left(1-p_{1}\right) \log \left(1-p_{1}\right)
$$

and the average symbol duration (or time per symbol) is

$$
T\left(p_{1}\right)=1 \cdot p_{1}+2 \cdot p_{2}=p_{1}+2\left(1-p_{1}\right)=2-p_{1}=1+p_{2} .
$$

Therefore the source entropy per unit time is

$$
f\left(p_{1}\right)=\frac{\mathcal{H}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{-p_{1} \log p_{1}-\left(1-p_{1}\right) \log \left(1-p_{1}\right)}{2-p_{1}} .
$$

Since $f(0)=f(1)=0$, the maximum value of $f\left(p_{1}\right)$ must occur for some point p_{1} such that $0<p_{1}<1$ and $\partial f / \partial p_{1}=0$.

$$
\frac{\partial}{\partial p_{1}} \frac{\mathcal{H}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{T\left(\partial \mathcal{H} / \partial p_{1}\right)-\mathcal{H}\left(\partial T / \partial p_{1}\right)}{T^{2}}
$$

After some calculus, we find that the numerator of the above expression (assuming natural logarithms) is

$$
T\left(\partial H / \partial p_{1}\right)-H\left(\partial T / \partial p_{1}\right)=\ln \left(1-p_{1}\right)-2 \ln p_{1}
$$

which is zero when $1-p_{1}=p_{1}^{2}=p_{2}$, that is, $p_{1}=\frac{1}{2}(\sqrt{5}-1)=0.61803$, the reciprocal of the golden ratio, $\frac{1}{2}(\sqrt{5}+1)=1.61803$. The corresponding entropy per unit time is

$$
\frac{\mathcal{H}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{-p_{1} \log p_{1}-p_{1}^{2} \log p_{1}^{2}}{2-p_{1}}=\frac{-\left(1+p_{1}^{2}\right) \log p_{1}}{1+p_{1}^{2}}=-\log p_{1}=0.69424 \mathrm{bits} .
$$

Problem 2.
(a) The number of 100-bit binary sequences with three or fewer ones is

$$
\binom{100}{0}+\binom{100}{1}+\binom{100}{2}+\binom{100}{3}=1+100+4950+161700=166751
$$

The required codeword length is $\left\lceil\log _{2} 166751\right\rceil=18$. (Note that the entropy of the source is $-0.005 \log _{2}(0.005)-0.995 \log _{2}(0.995)=0.0454$ bits, so 18 is quite a bit larger than the 4.5 bits of entropy per 100 source letters.)
(b) The probability that a 100 -bit sequence has three or fewer ones is

$$
\sum_{i=0}^{3}\binom{100}{i}(0.005)^{i}(0.995)^{100-i}=0.60577+0.30441+0.7572+0.01243=0.99833
$$

Thus the probability that the sequence that is generated cannot be encoded is $1-$ $0.99833=0.00167$.
(c) In the case of a random variable S_{n} that is the sum of n i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$, Chebyshev's inequality states that

$$
\operatorname{Pr}\left(\left|S_{n}-n \mu\right| \geq a\right) \leq \frac{n \sigma^{2}}{a^{2}}
$$

where μ and σ^{2} are the mean and variance of X_{i}. (Therefore $n \mu$ and $n \sigma^{2}$ are the mean and variance of S_{n}.) In this problem, $n=100, \mu=0.005$, and $\sigma^{2}=(0.005)(0.995)$. Note that $S_{100} \geq 4$ if and only if $\left|S_{100}-100(0.005)\right| \geq 3.5$, so we should choose $a=3.5$. Then

$$
\operatorname{Pr}\left(S_{100} \geq 4\right) \leq \frac{100(0.005)(0.995)}{(3.5)^{2}} \approx 0.04061
$$

This bound is much larger than the actual probability 0.00167 .
Problem 3. The volume $V_{n}=\prod_{i=1}^{n} X_{i}$ is a random variable, since the X_{i} are random variables uniformly distributed on $[0,1] . V_{n}$ tends to 0 as $n \rightarrow \infty$. However

$$
\log _{e} V_{n}^{1 / n}=\frac{1}{n} \log _{e} V_{n}=\frac{1}{n} \sum \log _{e} X_{i} \rightarrow E\left[\log _{e}(X)\right] \text { a.e. }
$$

by the Strong Law of Large Numbers, since X_{i} and $\log _{e}\left(X_{i}\right)$ are i.i.d. and $E\left[\log _{e}(X)\right]<\infty$. Now

$$
E\left[\log _{e}\left(X_{i}\right)\right]=\int_{0}^{1} \log _{e}(x) d x=-1
$$

Hence, since e^{x} is a continuous function,

$$
\lim _{n \rightarrow \infty} V_{n}^{1 / n}=\exp \left[\lim _{n \rightarrow \infty} \frac{1}{n} \log _{e} V_{n}\right]=\frac{1}{e}<\frac{1}{2} .
$$

Thus the "effective" edge length of this solid is e^{-1}. Note that since the X_{i} 's are independent, $E\left(V_{n}\right)=\prod E\left(X_{i}\right)=(1 / 2)^{n}$.
Problem 4.
By the strong law of large numbers,

$$
\begin{aligned}
\lim -\frac{1}{n} \log \frac{q\left(X_{1}, \ldots, X_{n}\right)}{p\left(X_{1}, \ldots, X_{n}\right)} & =\lim -\frac{1}{n} \sum \log \frac{q\left(X_{i}\right)}{p\left(X_{i}\right)} \\
& =-E\left[\log \frac{q(X)}{p(X)}\right] \quad \text { w.p. } 1 \\
& =-\sum p(x) \log \frac{q(x)}{p(x)} \\
& =\sum p(x) \log \frac{p(x)}{q(x)} \\
& =D(p \| q)
\end{aligned}
$$

Problem 5. Let the random variable $X(i)$ represent the outcome of the $i^{\text {th }}$ toss. The $X(i)$'s are i.i.d. (distribution p) random variables taking values in $\{1 \ldots K\}$. The capital C_{n} after the $n^{\text {th }}$ toss is related to the capital C_{n-1} after the $(n-1)^{\text {th }}$ toss as

$$
C_{n}=C_{n-1} \frac{f(X(n))}{q(X(n))}
$$

Using the above relation recursively, C_{n} can be expressed in terms of C_{0} as

$$
C_{n}=C_{0} \prod_{i=1}^{n} \frac{f(X(i))}{q(X(i))}
$$

(a) The "long term" rate of return $r=\lim _{n \rightarrow \infty} R_{n}$ is given by

$$
\begin{aligned}
\lim _{n \rightarrow \infty} R_{n} & =\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{C_{n}}{C_{0}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \prod_{i=1}^{n} \frac{f(X(i))}{q(X(i))} \\
& =E \log \frac{f(X)}{q(X)} \quad \text { a.s } \\
& =\sum_{i=1}^{K} p(x) \log \frac{f(x)}{q(x)} \\
& =\sum_{i=1}^{K} p(x)\left(\log \frac{p(x)}{q(x)}+\log \frac{f(x)}{p(x)}\right) \\
& =D(p \| q)-D(p \| f)
\end{aligned}
$$

where X is a random variable corresponding to the outcome of a toss. The third equality follows from the strong law of large numbers.
(b) Note that only the second divergence term depends on f and is minimum when $f=p$. Therefore the gambler maximizes r by choosing $f=p$ and this maximal $r=D(p \| q)$. Note that the maximal long term return is positive as long as the casinos odds are different from the odds implied by the true distribution.

