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Problem 1.

(a) Consider X and Y to be independent random variables taking values 0 and 1 with
equal probability and let Z = X ⊕ Y that is the modulo 2 sum of X and Y .

(b) Let X = Y = Z and each take values 0 and 1 with equal probability.

Problem 2.

(a) We have

(i) H(X|Y ) = H(X) since X and Y are independent.

(ii) H(X|K) = H(X) since X and K are independent.

(iii) H(Y |X, K) = 0 since X and K determine Y .

(iv) H(X|Y,K) = 0 since Y and K determine X by the decryptability condition.

(v) I(X; Y |K) = H(X|K)−H(X|Y,K) = H(X) by (iv) and (ii).

(vi) H(Y |K) = I(X; Y |K) + H(Y |X, K) = H(X) by (v) and (iii).

(b) Suppose k a key common to both K(x1) and K(x2). Then, the pair y0, k can be
decrypted as either x1 or x2, contradicting the decryptability condition.

(c) Since I(X; Y ) = 0 we know that X and Y are independent and thus, Pr(Y = y) =
Pr(Y = y|X = x) for all x and y. In particular

0 < Pr(Y = y0) = Pr(Y = y0|X = x).

Thus for each x, K(x) is not empty, for otherwise Pr(Y = y0|X = x) would have been
zero. If any K(x) had more than one element, then the total number of keys would
exceed the number of source letters; thus each K(x) must have exactly one element.

(d) Given that X = x, the only way Y = y0 is when K = k(x). Since X and K are
independent this happens with probability Pr(K = k(x)).

(e) We have Pr(Y = y0) = Pr(Y = y0|X = x) = Pr(K = k(x)). Since the left hand side
does not depend on x, the same must be true for the right hand side. Since k(x)
exhausts all the keys as x ranges over the source letters, we see that Pr(K = k) does
not depend on k and hence that K is uniformly distributed.

Problem 3. Let X i denote X1, . . . , Xi.



(a) By the chain rule for entropy,

H(X1, X2, . . . , Xn)

n
=

∑n
i=1 H(Xi|X i−1)

n
(1)

=
H(Xn|Xn−1) +

∑n−1
i=1 H(Xi|X i−1)

n
(2)

=
H(Xn|Xn−1) + H(X1, X2, . . . , Xn−1)

n
. (3)

where we use the notation X i−1 = {X1, X2, . . . , Xi−1. Since conditioning reduces the
entropy we have

H(Xn|Xn−1) ≤ H(Xn|Xn−1, Xn−2, . . . , Xn−i+1)

From stationarity it follows that for all 1 ≤ i ≤ n,

H(Xn|Xn−1, Xn−2, . . . , Xn−i+1) = H(Xn, Xn−1, Xn−2, . . . , Xn−i+1)−H(Xn−1, Xn−2, . . . , Xn−i+1)

= H(Xi, Xi−1, Xi−2, . . . , X1)−H(Xi−1, Xi−2, . . . , X1)

= H(Xi|Xi−1, Xi−2, . . . , X1)

Thus
H(Xn|Xn−1) ≤ H(Xi|X i−1),

which further implies, by summing both sides over i = 1, . . . , n − 1 and dividing by
n− 1, that,

H(Xn|Xn−1) ≤
∑n−1

i=1 H(Xi|X i−1)

n− 1
(4)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (5)

Combining (3) and (5) yields,

H(X1, X2, . . . , Xn)

n
≤ 1

n

[
H(X1, X2, . . . , Xn−1)

n− 1
+ H(X1, X2, . . . , Xn−1)

]
(6)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (7)

(b) By stationarity we have for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which implies that,

H(Xn|Xn−1) =

∑n
i=1 H(Xn|Xn−1)

n
(8)

≤
∑n

i=1 H(Xi|X i−1)

n
(9)

=
H(X1, X2, . . . , Xn)

n
. (10)
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Problem 4. By the chain rule for entropy,

H(X0|X−1, . . . , X−n) = H(X0, X−1, . . . , X−n)−H(X−1, . . . , X−n) (11)

= H(X0, X1, . . . , Xn)−H(X1, . . . , Xn) (12)

= H(X0|X1, . . . , Xn), (13)

where (12) follows from stationarity.

Problem 5. For a Markov chain, X0 and Xn are independent given Xn−1. Thus

H(X0|XnXn−1) = H(X0|Xn−1)

But, since conditioning reduces entropy,

H(X0|XnXn−1) ≤ H(X0|Xn).

Putting the above together we see that H(X0|Xn−1) ≤ H(X0|Xn).

Problem 6.
X1, X2, . . . are i.i.d. with distribution p(x). Hence f(Xi) are also i.i.d. and

lim(Πn
i=1f(Xi))

1
n = lim 2log(Πn

i=1f(Xi))
1
n

= 2lim 1
n

P
log f(Xi)

= 2E(log(f(X)) a.s.

by the strong law of large numbers. Note: The abbreviation a.s. stands for ‘almost surely’,
which is synonymous with ‘with probability 1’.

(a) Let random variable Zi represent the multiplicative gain of the gambler for toss i. Zi

is i.i.d., taking the value 2 with probability 0.5 and the value 1
3

with probability 0.5.
The gambler fortune Sn at time n can be described by

Sn = Πn
i=1Zi

Using the result above

lim
n→∞

S
1
n
n = 2E(log(Z)) a.s.

= 20.5 log( 2
3
) =

√
2

3
a.s.

(b) For any ε > 0, we can find n large enough so that

S
1
n
n <

√
2

3
+ ε a.s.

Raising to the nth power we have that

Sn < (

√
2

3
+ ε)n a.s.

As Sn ≥ 0 and the upper bound tends to 0 as n →∞, we have that

lim
n→∞

Sn = 0 a.s.
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(c)

E(Sn|Sn−1) =
1

2
(2Sn−1 +

1

3
Sn−1) =

7

6
Sn−1

Taking an expectation over all possible values of Sn−1, we get

E(Sn) =
7

6
E(Sn−1)

Using the fact that S1 = 1, we can compute E(Sn) = (7
6
)n.

(d) Since limn→∞ Sn = 0 a.s.,
E lim

n→∞
Sn = 0

(Since expectation is an integral we do not bother with measure 0 events to compute
the integral) . Whereas

lim
n→∞

E(Sn) = lim
n→∞

(
7

6
)n = ∞

Therefore
E lim

n→∞
Sn 6= lim

n→∞
E(Sn)
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