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Problem 1. Recall that the minimum distance is also given by the weight of the minimum
weight codeword (see last problem of Homework 10). Now observe that there exists a
codeword x of weight w iff HxT = 0 where H is the parity-check matrix with n columns.
This is equivalent to say that some w columns of H are linearly dependent. We then know
that there exist d column that are linearly dependent. However no combination of d − 1
columns or less are dependent since this case would give rise to a codeword of weight less
or equal than d− 1. This concludes the proof.

Problem 2.

(a) We know that the minimum distance of a linear code is the same as the minimum
weight of the 2L− 1 non-zero codewords. Since the minimum of a set of number is at
most their average, the average weight of the non-zero codewords is an upper bound
on the minimum distance. To compute the average weight of the non-zero codewords,
we would find the total number of 1’s in the non-zero codewords, and divide by the
number of non-zero codewords. But from (2c) we know that the total number of 1’s is
at most 1

2
N2L. This then yields that the average weight is at most (N/2)2L/(2L − 1)

which is the required bound.

The proof that this bound is valid for all (not necessarily linear) codes is a bit more
complicated: Consider a code C with M codewords with minimum distance dmin.
Since dmin ≤ d(x,y) for all codewords x and y such that x 6= y, we conclude that

M(M − 1)dmin ≤
∑
x∈C

∑
y∈C
y 6=x

d(x,y) =
∑
x∈C

∑
y∈C

d(x,y)

Now, d(x,y) =
∑N

i=1 d(xi, yi) where xi and yi are the ith digit of x and y and d(xi, yi)
is equal to 1 if xi and yi are different and zero otherwise. Thus,

M(M − 1)dmin ≤
N∑

i=1

∑
x∈C

∑
y∈C

d(xi, yi).

Suppose out of the M codewords Zi of them have a 0 as their ith digit. Let Si denote
these codewords. Then, necessarily M − Zi of the codewords will have a 1 as their
ith digit. Note that∑

x∈C

∑
y∈C

d(xi, yi) =
∑
x∈Si

∑
y∈C

d(xi, yi) +
∑
x∈Sc

i

∑
y∈C

d(xi, yi)

=
∑
x∈Si

∑
y∈Sc

i

1 +
∑
x∈Sc

i

∑
y∈Si

1

= Zi(M − Zi) + (M − Zi)Zi

= 2Zi(M − Zi).



Note that maxz 2z(M − z) = M2/2, and thus
∑

x∈C

∑
y∈C d(xi, yi) ≤ M2/2. Thus,

M(M − 1)dmin ≤ NM2/2,

yielding dmin ≤ (N/2)M/(M − 1). With M = 2L we obtain the same bound as in the
linear case.

(b) Assume that the code is systematic, namely, each codeword consists of L information
bits followed by N −L check bits. Let us look at the subset of codewords which start
with L−j 0s. Since the rest of the j information bits are arbitrary this subset contains
2j elements. Since the minimum distance within any subset of the codewords is an
upper bound to the minimum distance of the whole code, let us apply the bound in
part (a) to this subset. Notice that the codewords within the subset agree in the first
L− j positions, so the distance between any two of them will not change if we simply
remove these bits. This yields a code of blocklength N − (L− j) with 2j codewords,
and applying the bound in part (a) gives the desired result.

In the general case (when the code is not linear), classify the M = 2L codewords
grouping them according to their initial L− j bits. Since there are only 2L−j groups,
one of the groups will contain more than M/2L−j = 2j codewords. These codewords,
by construction agree on their initial L− j bits, so the minimum distance within this
group will not change if we remove these bits. Applying the bound in part (a) to this
subset of codewords we again obtain the desired bound.

(c) First, rewrite the bound in part (b) as

N − L ≥ 2dmin
2j − 1

2j
− j = 2dmin − j − 2dmin

2j

Taking j = 1 + blog2 dminc, we see that

N − L ≥ 2dmin − 1− blog2 dminc −
2dmin

2j

Since N − L is an integer, we can improve the lower bound by rounding it up to the
nearest integer:

N − L ≥ 2dmin − 1− blog2 dminc −
⌊

2dmin

2j

⌋
.

But, log2 dmin < j ≤ 1 + log2 dmin, and thus dmin < 2j ≤ 2dmin. So,

2 >
2dmin

2j
≥ 1,

and b2dmin/2
jc = 1. Thus, we obtain the desired result,

N − L ≥ 2dmin − 2− blog2 dminc.

Note that for d ≥ 3 this is a tighter bound than the Singleton bound we proved in
class N − L ≥ dmin − 1.

Problem 3.
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(a) At the first step, we can choose any non-zero column vector with r coordinates. This
will be the first column of our r×n parity-check matrix. Now suppose we have chosen
i columns so that no d − 1 are linearly dependent. They are all non-zero columns.
There are at most (

i

1

)
+ · · ·+

(
i

d− 2

)
distinct linear combinations of these i columns taken 2− 2 or fewer at a time.

(b) The total number of r-tuples (include the all-zero one) is 2r. We can then choose a
new column different from the previous ones, linearly independent from the previous
ones, and keep the property that every d− 1 columns are independent.

(c) We can iterate the procedure and we keep doing so as long as

1 +

(
i

1

)
+ · · ·

(
i

d− 2

)
< 2r

where the first term counts the all-zero vector. At the last step, we can do so iff

1 +

(
n− 1

1

)
+ · · ·

(
n− 1

d− 2

)
< 2r.

(d) Multiply both sides of the previous inequality by M = 2k gives the result since
r = n− k.
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