
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 10 Information Theory and Coding
Solutions to homework 5 Oct 26, 2007

Problem 1.

(a) Let I be the set of intermediate nodes (including the root), let N be the set of
nodes except the root and let L be the set of all leaves. For each n ∈ L define
A(n) = {m ∈ N : m is an ancestor of n} and for each m ∈ N define D(m) = {n ∈
L : n is a descendant of m}. We assume each leaf is an ancestor and a descendant of
itself. Then

E[distance to a leaf] =
∑
n∈L

P (n)
∑

m∈A(n)

d(m)

=
∑
m∈N

d(m)
∑

n∈D(m)

P (n) =
∑
m∈N

P (m)d(m).

(b) Consider any leaf node say nj. Consider the unique path in the tree from the leaf
node nj to the root. Let us label the nodes, which we encounter along the path to
the root, as n1

j , n
2
j , . . . , n

l
j where nl

j is the root of the tree. We observe that

P (nj) =
P (nj)

P (n1
j)

P (n1
j)

P (n2
j)
· · ·

P (nl−1
j )

P (nl
j)

(1)

where P (ni
j) are the probabilities assigned in the usual way to the intermediate nodes.

Also note that P (nl
j) = P (root) = 1. Thus from the definition of Q(n) we can say

that

P (nj) = Q(nj)Q(n1
j) · · ·Q(nl−1

j ) (2)

Let d(n) = − log Q(n). We see that − log P (nj) is the distance associated with a leaf.
From part (a),

H(leaves) = E[distance to a leaf]

=
∑
n∈N

P (n)d(n)

= −
∑
n∈N

P (n) log Q(n)

= −
∑
n∈N

P (parent of n)Q(n) log Q(n)

= −
∑
m∈I

P (m)
∑

n: n is a child of m

Q(n) log Q(n)

=
∑
m∈I

P (m)Hm′



(c) Let us assume that there are K symbols. Remember that for a valid dictionary we
require all the paths in the tree to have atleast one word and prefix free means that
the words should be leaves. Hence from every intermediate node there are K children
and clearly P (child)/P (parent) = p(k) where p(k) is the probability of the symbol k.
As a result

Hn = −
∑

n:n is a child of n′

P (n)

P (n′)
log

P (n)

P (n′)
= −

∑
k

p(k) log p(k) = H

Thus each Hn = H. Thus H(leaves) = H
∑

n∈I P (n) = HE[L].

Problem 2. (a) Since the words of a valid and prefix condition dictionary reside in the
leaves of a full tree, the Kraft inequality must be satisfied with equality: Consider
climbing up the tree starting from the root, choosing one of the D branches that
climb up from a node with equal probability. The probability of reaching a leaf at
depth li is then D−li . Since the climbing process will certainly end in a leaf, we have

1 = Pr(ending in a leaf) =
∑

i

D−li .

(b) Multiplying both sides of the expression above by Dlmax , where lmax is the maximum
length of a string, we have

Dlmax =
∑

i

Dlmax−li

We also have that ∀j ≥ 0, Dj = 1 mod (D−1). Taking mod (D−1) on both sides
of the above expression, we have that

1 = (
∑

i

Dlmax−li) mod (D − 1)

= (
∑

i

Dlmax−li mod (D − 1)) mod (D − 1)

= (
∑

i

1) mod (D − 1)

= (Number of words) mod (D − 1)

(c) If the dictionary is valid but not prefix-free, by removing all words that already have
a prefix in the dictionary we would obtain a valid prefix-free dictionary. Since this
reduced dictionary would satisfy the Kraft inequality with equality, the extra words
would cause the inequality to be violated.

Problem 3. Upon noticing 0.96 > 0.1, we obtain {1, 01, 001, 0001, 00001, 000001, 0000001,
0000000} as the dictionary entries.

Problem 4. Let s(m) = 0 + 1 + · · · + (m − 1) = m(m − 1)/2. Suppose we have a string
of length n = s(m). Then, we can certainly parse it into m words of lengths 0, 1, . . . ,
(m− 1), and since these words have different lengths, we are guaranteed to have a distinct
parsing. Since a parsing with the maximal number of distinct words will have at least as
many words as this particular parsing, we conclude that whenever n = m(m−1)/2, c ≥ m.

An all zero string of length s(m) can be parsed into at most m words: in this case
distinct words must have distinct lengths.

2



Now, given n, we can find m such that s(m − 1) ≤ n < s(m). A string with n letters
can be parsed into m − 1 distinct words by parsing its initial segment of s(m − 1) letters
with the above procedure, and concatenating the leftover letters to the last word. Thus,
if a string can be parsed into m − 1 distinct words, then n < s(m), and in particular,
n < s(c + 1) = c(c + 1)/2.

Problem 5. We have to check that the length of the codewords satisfy Kraft’s inequality.
Taking l(n) = dα log n + const(α)e − 1 we get,∑

n

2−l(n) ≤
∑

n

2−const(α) 1

nα

Also, we know that ∀α > 1,
∑

n
1

nα < ∞. Thus there exists a const(α) large enough so
that the right hand side is less than or equal to 1.

Problem 6.

(a) (i) Let set Eik contain all binary sequences {Y } such that

Yj =


1 j = −k, i

0 − k < j < i

arbitrary else

The set E of all binary sequences which contain a 1, both at a negative and a non-
negative time index, is the disjoint union of the sets Eik for all i ≥ 0, k ≥ 1, i.e.,
E =

⋃
i≥0,k≥1 Eik. Since the complement of E has probability 0 (the probability

that a pattern will not occur in the infinite future (or the infinite past) is zero),
we have

1 = Pr(E) = Pr(
⋃

i≥0,k≥1

Eik) =
∞∑

k=1

∞∑
i=0

Pr(Eik)

Equivalently,

∞∑
k=1

∞∑
i=0

Pr(Y−k = 1, Yj = 0 for − k < j < i, Yi = 1) = 1

(ii) Let L.H.S denote the expression on the left hand side of the above relation.
Since the {X} sequence is stationary, so is the {Y } sequence. We therefore have

L.H.S =
∞∑

k=1

∞∑
i=0

Pr(Y−k = 1, Yj = 0 for − k < j < i, Yi = 1)

=
∞∑

k=1

∞∑
i=0

Pr(Y−(i+k) = 1, Yj = 0 for − (k + i) < j < 0, Y0 = 1)

=
∞∑

k=1

∞∑
i=0

Pr(Y0 = 1) Pr(Y−(k+i) = 1, Yj = 0 for − (k + i) < j < 0|Y0 = 1)

= Pr(Y0 = 1)
∞∑

k=1

∞∑
i=0

Q(i + k)

3



(iii) Reducing the double summation to a single summation, we have

Pr(Y0 = 1)
∞∑

k=1

∞∑
i=0

Q(i + k) = Pr(Y0 = 1)
∞∑

j=1

jQ(j)

= plE(Nl(X)|X l
1 = xl

1)

Parts (i),(ii) and (iii) give us that

E(Nl(X)|X l
1 = xl

1) =
1

pl

(b) For a positive random variable N ,

log N = log
N

E(N)
+ log E(N)

≤
(

N

E(N)
− 1

)
log e + log E(N)

since ln x ≤ x − 1. Taking expectation on both sides of the inequality yields E(log N) ≤
log E(N).

Using this upper bound we get,

E(l(Nl)) = E(E(α log Nl + const(α)|X l
1)

≤ E(α log E(Nl|X l
1) + const(α))

= E(α log
1

pl

+ const(α))

= αH(X l
1) + const(α).

The encoding efficiency is 1
l
E(l(Nl)) = 1

l
(αH(X l

1) + const(α)) bits/letter. We take α
arbitrarily close to 1 and l large enough so that 1

l
const(α) is as small as desired. Thus, we

can get arbitrarily close to the entropy rate of the source.

4


