ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 4	Information Theory and Coding
Homework 3	October 12, 2007

PROBLEM 1. Let X, Y and Z be binary valued discrete random variables.

- (a) Find a joint probability assignment P(x, y, z) such that I(X; Y) = 0 and I(X; Y|Z) = 1 bit.
- (b) Find a joint probability assignment P(x, y, z) such that I(X, Y) = 1 bit and I(X; Y|Z) = 0.

The point of the problem is that no general inequality exists between I(X, Y) and I(X; Y|Z).

PROBLEM 2. Consider a cryptographic system in which we wish to encrypt a source X with entropy H(X) using a secret key K with entropy H(K). There is a function f(x,k) that maps the source X and the key K to the encrypted output Y. This function is decryptable in the sense that for each key k, $f(x_1,k) \neq f(x_2,k)$ for source letters $x_1 \neq x_2$. Assume that X and K are independent random variables. Assume also that the encryption scheme has the property that I(X;Y) = 0, which is to say that the observation of the output y provides no information about the source if one does not know the key.

- (a) Find the value of the following quantities in terms of H(X) and H(K).
 - (i) H(X|Y)
 - (ii) H(X|K)
 - (iii) H(Y|X, K)
 - (iv) H(X|Y,K)
 - (v) I(X;Y|K)
 - (vi) H(Y|K)
- (b) Suppose now and for the rest of the problem, that all the source letters x have a positive probability Pr(X = x). Fix an output y_0 with positive probability, and let $\mathcal{K}(x)$ be the set of keys k for which $f(x,k) = y_0$. Show that $\mathcal{K}(x_1)$ and $\mathcal{K}(x_2)$ are disjoint when $x_1 \neq x_2$. [Hint: the decryptability condition says that from an output y and key k it is possible to uniquely determine the source letter x which produced the output y.]
- (c) Suppose, in addition, and for the rest of the problem, that the number of keys is the same as the number of source letters. Using part (b) show that each set $\mathcal{K}(x)$ contains a single element.
- (d) Let the single element of $\mathcal{K}(x)$ of part (c) be denoted by k(x). Show that

$$\Pr(Y = y_0 | X = x) = \Pr[K = k(x)]$$

(e) Using I(X;Y) = 0 conclude that for all x, $\Pr(Y = y_0 | X = x) = \Pr(Y = y_0)$. Using part (d), conclude that $\Pr[K = k(x)]$ does not depend on x. Show that K is uniformly distributed.

PROBLEM 3. For a stationary process X_1, X_2, \ldots , show that

(a)
$$\frac{1}{n}H(X_1, \dots, X_n) \le \frac{1}{n-1}H(X_1, \dots, X_{n-1})$$

(b) $\frac{1}{n}H(X_1, \dots, X_n) \ge H(X_n | X_{n-1}, \dots, X_1).$

PROBLEM 4. Let $\{X_i\}_{i=-\infty}^{\infty}$ be a stationary stochastic process. Prove that

$$H(X_0|X_{-1},\ldots,X_{-n}) = H(X_0|X_1,\ldots,X_n).$$

That is: the conditional entropy of the present given the past is equal to the conditional entropy of the present given the future.

PROBLEM 5. Show, for a Markov chain, that

$$H(X_0|X_n) \ge H(X_0|X_{n-1}), \quad n \ge 1.$$

Thus, initial state X_0 becomes more difficult to recover as time goes by.

PROBLEM 6. Let X_1, X_2, \ldots be i.i.d., each with probability distribution p(x). Let f be any function on the space of the random variables X_i . Show that with probability one

$$\lim_{n \to \infty} (\prod_{i=1}^n f(X_i))^{1/n}$$

exists, and find its value. Hint: use the AEP.

Now consider the following gambling game. At the *n*-th stage, you have an amount S_n . The casino tosses a fair coin. If the coin turns up heads, the casino doubles your amount(i.e., $S_{n+1} = 2S_n$). If the coin turns up tails, you give back two-thirds of your amount to the casino(i.e., $S_{n+1} = \frac{1}{3}S_n$). You start the game with 1 franc($S_1 = 1$).

- (a) Evaluate $\lim_{n\to\infty} S_n^{1/n}$.
- (b) Evaluate $\lim_{n\to\infty} S_n$.
- (c) Evaluate $E(S_n)$.
- (d) Is it true that $E \lim_{n \to \infty} S_n = \lim_{n \to \infty} E(S_n)$?