ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 4

Information Theory and Coding
Homework 3
October 12, 2007

Problem 1. Let X, Y and Z be binary valued discrete random variables.
(a) Find a joint probability assignment $P(x, y, z)$ such that $I(X ; Y)=0$ and $I(X ; Y \mid Z)=$ 1 bit.
(b) Find a joint probability assignment $P(x, y, z)$ such that $I(X, Y)=1$ bit and $I(X ; Y \mid Z)=$ 0.

The point of the problem is that no general inequality exists between $I(X, Y)$ and $I(X ; Y \mid Z)$.
Problem 2. Consider a cryptographic system in which we wish to encrypt a source X with entropy $H(X)$ using a secret key K with entropy $H(K)$. There is a function $f(x, k)$ that maps the source X and the key K to the encrypted output Y. This function is decryptable in the sense that for each key $k, f\left(x_{1}, k\right) \neq f\left(x_{2}, k\right)$ for source letters $x_{1} \neq x_{2}$. Assume that X and K are independent random variables. Assume also that the encryption scheme has the property that $I(X ; Y)=0$, which is to say that the observation of the output y provides no information about the source if one does not know the key.
(a) Find the value of the following quantities in terms of $H(X)$ and $H(K)$.
(i) $H(X \mid Y)$
(ii) $H(X \mid K)$
(iii) $H(Y \mid X, K)$
(iv) $H(X \mid Y, K)$
(v) $I(X ; Y \mid K)$
(vi) $H(Y \mid K)$
(b) Suppose now and for the rest of the problem, that all the source letters x have a positive probability $\operatorname{Pr}(X=x)$. Fix an output y_{0} with positive probability, and let $\mathcal{K}(x)$ be the set of keys k for which $f(x, k)=y_{0}$. Show that $\mathcal{K}\left(x_{1}\right)$ and $\mathcal{K}\left(x_{2}\right)$ are disjoint when $x_{1} \neq x_{2}$. [Hint: the decryptability condition says that from an output y and key k it is possible to uniquely determine the source letter x which produced the output y.]
(c) Suppose, in addition, and for the rest of the problem, that the number of keys is the same as the number of source letters. Using part (b) show that each set $\mathcal{K}(x)$ contains a single element.
(d) Let the single element of $\mathcal{K}(x)$ of part (c) be denoted by $k(x)$. Show that

$$
\operatorname{Pr}\left(Y=y_{0} \mid X=x\right)=\operatorname{Pr}[K=k(x)]
$$

(e) Using $I(X ; Y)=0$ conclude that for all $x, \operatorname{Pr}\left(Y=y_{0} \mid X=x\right)=\operatorname{Pr}\left(Y=y_{0}\right)$. Using part (d), conclude that $\operatorname{Pr}[K=k(x)]$ does not depend on x. Show that K is uniformly distributed.

Problem 3. For a stationary process X_{1}, X_{2}, \ldots, show that
(a) $\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right) \leq \frac{1}{n-1} H\left(X_{1}, \ldots, X_{n-1}\right)$.
(b) $\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right) \geq H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right)$.

Problem 4. Let $\left\{X_{i}\right\}_{i=-\infty}^{\infty}$ be a stationary stochastic process. Prove that

$$
H\left(X_{0} \mid X_{-1}, \ldots, X_{-n}\right)=H\left(X_{0} \mid X_{1}, \ldots, X_{n}\right)
$$

That is: the conditional entropy of the present given the past is equal to the conditional entropy of the present given the future.

Problem 5. Show, for a Markov chain, that

$$
H\left(X_{0} \mid X_{n}\right) \geq H\left(X_{0} \mid X_{n-1}\right), \quad n \geq 1
$$

Thus, initial state X_{0} becomes more difficult to recover as time goes by.
Problem 6. Let X_{1}, X_{2}, \ldots be i.i.d., each with probability distribution $p(x)$. Let f be any function on the space of the random variables X_{i}. Show that with probability one

$$
\lim _{n \rightarrow \infty}\left(\prod_{i=1}^{n} f\left(X_{i}\right)\right)^{1 / n}
$$

exists, and find its value. Hint: use the AEP.
Now consider the following gambling game. At the n-th stage, you have an amount S_{n}. The casino tosses a fair coin. If the coin turns up heads, the casino doubles your amount(i.e., $S_{n+1}=2 S_{n}$). If the coin turns up tails, you give back two-thirds of your amount to the casino(i.e., $S_{n+1}=\frac{1}{3} S_{n}$). You start the game with $1 \operatorname{franc}\left(S_{1}=1\right)$.
(a) Evaluate $\lim _{n \rightarrow \infty} S_{n}^{1 / n}$.
(b) Evaluate $\lim _{n \rightarrow \infty} S_{n}$.
(c) Evaluate $E\left(S_{n}\right)$.
(d) Is it true that $E \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} E\left(S_{n}\right)$?

