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Communication Systems Department

Handout 29 Information Theory and Coding
Solutions to Final Exam February 22, 2001

Problem 1.

(a) Let the codeword length for the source letter u be l(u) = − log2 Pr(u). Since Pr(u)
is an integer power of 1/2, l(u) is an integer. Furthermore,

∑

u

2−l(u) =
∑

u

Pr(u) = 1,

so {l(u)} satisfies the Kraft inequality and

E[l(U)] =
∑

u

Pr(u)l(u) = −
∑

u

Pr(u) log2 Pr(u) = H(U),

so that the expected codeword length is equal to the entropy of the source. Since
Huffman coding has to do as well as any other coding scheme, and since no coding
scheme can do better than the entropy, we conclude that the expected codeword
length of the Huffman code is the same as the entropy.

(b) Since the source is stationary, the distribution of (X2k−1, X2k) is the same for any k.
In method 1 we design a code for a source U whose distribution is identical to the
distribution of (X1, X2), and since all probabilities of interest are integer powers of
1/2, we see that the expected codeword length will be H(X1, X2). Since the method
encodes two letters at a time, the expected codeword length per letter is

1

2
H(X1, X2).

(c) In method 2 we design |X | Huffman codes, one for each value of the preceding letter.
When we are encoding Xk, if the preceding letter Xk−1 is x′ we use a Huffman code
for the source that has distribution p(x) = Pr(Xk = x|Xk−1 = x′). By stationarity
this is the same as Pr(X2 = x|X1 = x′), and the Huffman code that is used when the
preceding letter is x′ has expected length

−
∑

x

Pr(X2 = x|X1 = x′) log2 Pr(X2 = x|X1 = x′).

The probability that the preceding letter is x′ is Pr(Xk−1 = x′) = Pr(X1 = x′), and
we see that the expected codeword length for method two is

−
∑

x′

Pr(X1 = x′)
∑

x

Pr(X2 = x|X1 = x′) log2 Pr(X2 = x|X1 = x′)

= −
∑

x,x′

Pr(X1 = x′, X2 = x) log2 Pr(X2 = x|X1 = x′) = H(X2|X1).



(d) Using the chain rule, that conditioning does not increase entropy, and stationarity
we get:

H(X1, X2) = H(X1) + H(X2|X1) ≥ H(X1|X0) + H(X2|X1) = 2H(X2|X1).

Thus, the expected codeword length of method 1, 1
2
H(X1, X2), is at least as large as

H(X2|X1), the expected codeword length of method 2. So, method 2 is better.

Problem 2.

(a) We have

I(X; Y ) = h(Y )− h(Y |X) = h(Y )− h(Z|X) = h(Y )− h(Z).

where the last equality is because Z is independent of X.

(b) In the natural log basis,

h(Z) = −

∫

fZ(z) ln fZ(z) dz =

∫

∞

0

ze−z dz = 1 nats.

(c) Since Y = X + Z, the expectation of Y , E[Y ] equals E[X] + E[Z]. Since E[X] is
constrained to be less than or equal to P and E[Z] = 1, we see that E[Y ] ≤ P + 1.
Since X is constrained to be non-negative and so is Z, we see that Y is also constrained
to be non-negative.

(d) From homework 10, problem 5 we know that among non-negative random variables of
a given expectation λ, the one with density p(y) = e−y/λ/λ has the largest differential
entropy. [Proof: for distribution q with mean λ,

0 ≤ D(q‖p)

=

∫

q(y) log q(y) dy −

∫

q(y) log p(y) dy

=

∫

q(y) log q(y) dy −

∫

p(y) log p(y) dy

= h(p)− h(q)

where the second equality is because log p(y) is of the form α +βy, and has the same
expectation under both p and q.) This maximal entropy in natural units is

∫

∞

0

e−y/λ

λ
[ln λ + y/λ] dy = lnλ + 1 nats.

Thus, the differential entropy of Y is less than 1 + ln E[Y ] ≤ 1 + ln(1 + P ), which
implies

C ≤ ln(1 + P ) nats

At this point, we do not know if Y can be made to have an exponential distribution
with mean 1 + P so we cannot know if this above inequality is an equality of not.
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(e) For the given density of X

fY (y) =

∫

∞

−∞

fZ(z)fX(y − z) dz

Note that fZ(z) = 0 for z < 0 and fX(y − z) = 0 when z > y. Thus, if y < 0 the
integrand is zero, and when y ≥ 0 the integrand is non-zero only when 0 ≤ z ≤ y.
Thus, for y ≥ 0

fY (y) =

∫ y

0

e−z[µδ(y − z) + (1− µ)µeµ(z−y)] dz

= µe−y + µe−µy

∫ y

0

(1− µ)e(µ−1)z dz

= µe−y − µe−µye(µ−1)z
∣

∣

∣

z=y

z=0

= µe−y − µ[e−y − e−µy]

= µe−µy.

(f) By taking µ = 1/(1 + P ), we see that there is a density on X which makes the the
density of Y an exponential with mean 1+P . Furthermore, this density on X makes
X non-negative, and, E[X] = E[Y ] − E[Z] = P . Thus, the bound on part (d) can
be achieved.

Problem 3.

(a) The channel is a binary symmetric channel with crossover probability ε. Hence, the
capacity is achieved by an input X taking the values 0 and 1 with probability 1/2,
and the capacity is log 2 + ε log ε + (1− ε) log(1− ε).

(b) The distance of the received sequence y from the transmitted codeword is given by
∑n

i=1 Zi =
∑d

i=1 Zi +
∑

i>d Zi. The distance of the received sequence from the other

codeword is given by
∑d

i=1(1 − Zi) +
∑

i>d Zi. Thus, the received sequence will be
closer to the wrong codeword only if

d
∑

i=1

Zi ≥ d/2.

(c) The Chernoff bound applies to our expression for the error probability with α = 1/2.
Choosing es = (1 − ε)/ε (which is larger than 1 because ε < 1/2 which makes sure
that s > 0), we see that

Pr(error) ≤
(

e−s/2E[esZ ]
)d

=
( ε1/2

(1− ε)1/2

[

(1− ε) + ε
1− ε

ε

])d

=
(

2
√

ε(1− ε)
)d

=
[

4ε(1− ε)
]d/2

.
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(d) We know that the error probability is given by

Pr
(

d
∑

i=1

Zi ≥ d/2
)

=
d

∑

k=(d+1)/2

Pr
(

d
∑

i=1

Zi = k
)

=

d
∑

k=(d+1)/2

(

d

k

)

εk(1− ε)d−k.

Keeping only the first term in this sum we get the required lower bound.

(e) When the codewords are chosen randomly, the distance between them is given by

D =
n

∑

i=1

1{Ui 6= Vi}

where 1(E) is a function that equals 1 is E is true and 0 is E is false. Thus,

E[D] =
n

∑

i=1

E[1{Ui 6= Vi}] =
n

∑

i=1

Pr(Ui 6= Vi) = n/2,

since for each i, Ui 6= Vi with probability 1/2.
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