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CAPACITY WITH CONSTRAINTS

In this note we prove the achievability part of the channel coding theorem for memory-
less channels under input constraints.

Recall the setting: we are given a channel with input alphabet X', output alphabet
Y, described by the conditional probabilities P(y|z). We are also given a cost function
p: X —[0,00), p(x) is the cost of input letter .

A block code with M messages and block length n is a mapping from a set of M messages
{1,..., M} to channel input sequences of length n. Thus, a block code is specified when
we specify the M channel input sequences ¢; = (¢11,..-,¢1n),--- € = (Cr1,s-- - Chn)
the messages are mapped into. We will call ¢, the codeword for message m.

To send message m with such a block code we simply give the sequence c,, to the
channel as input.

The cost of codeword ¢, = (¢n1y---,Cmn) is defined to be p(cy,) = %Z?:l p(Cma).
The code is said to obey a cost constraint P if each codeword has cost less than or equal
to P.

A decoder for such a block code is a mapping from channel output sequences V" to
the set of M messages {1,...,M}. For a given decoder, let D,, C Y™ denote the set of
channel outputs which are mapped to message m. Since an output sequence y is mapped
to exactly one message, D,,’s form a collection of disjoint sets whose union is )".

We define the rate of a block code with M messages and block length n as
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and given such a code and a decoder we define
Pe,m = Z P(y’Cm)a
YZDm
the probability of a decoding error when message m is sent. Further define
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Pe,ave = M E Pe,m and Pe,max = nax Pe,m
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as the average and maximal (both over the possible messages) error probability of such a
code and decoder.

Given a channel and a cost function, we say that a rate R can be achieved under cost
constraint P if for every 6 > 0 there is a block code with rate at least R, each codeword
having cost at most P 4+ 9 and P.,, < ¢ for every m. The capacity of a channel under a
cost constraint P is the supremum of achievable rates.

THEOREM 1. The capacity of a channel under cost constraint P is given by
C =max[(X;Y)

where the maximum is taken over all input distributions px that satisfy E[p(X)] < P.



In the class we proved that the capacity is at most C'. In this note we will show that
for any distribution px on the input alphabet of the channel for which E[p(X)] < P, all
rates up to I(X;Y') are achievable. This then says that capacity is at least C, proving the
theorem.

To this end, suppose we are given a px for which F[p(X)] < P and a rate R <
I(X;Y). Our task is to find, for each 6 > 0, a code with rate at least R, maximal error
probability at most ¢ and whose codewords obey cost constraint P + d. Suppose then
§ > 0 is given, and consider constructing a block code of block length n and M = 2 x 2"
codewords by randomly choosing each letter of each codeword independently, according to
the distribution px. (Note that we are choosing twice the number of codewords needed,
the reason will become clear later when we will eliminate half the chosen codewords.)
Being defined as a result of a random experiment, such a code is a random variable,
with codewords Cy, ..., C,;. The probability that a particular codeword with codewords
ci=(c11,--sClny---sCm = (Car1,-- -, Cmp) IS constructed is
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Consequently, the quantities P.,, and also the costs of each codewords are all random
variables.

Let A, be the set of jointly typical sequences of length n with respect to the distribution
pxy(z,y) = px(x)P(y|x), that is, the set

{(x, y) €X" x Y ;
~logpx(x) — H(X)| <

1
—~logpy (y) — H(Y)| < ¢

1
_EIngXY@(? y) — H(X, Y)‘ < 6}-

Since R < I(X;Y) one can find € > 0 such that R < I(X;Y) — 3e. Fix such an € and
consider a decoder that operates as follows: Given a y € )", if there is exactly one m for
which (C,,,y) € A, and if this C,, has cost less than P + ¢, the decoder declares m as its
decision. Otherwise the decoder is free in its decision (but we will assume that an error is
made).

Let us now upper bound the expected probability of error, E[P,,,] (the expectation is
over the random choice of the code). By symmetry, it is sufficient to consider E[P, 4], i.e.,
to assume that the transmitted codeword is ¢;. The E[FP, ;] equals,

Z e ZZpX(cl) —..px(cp)P(yler)1{p(c1) > P+ d or (not Ey) or Ey or ...or Ey}
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where E,, stands for “(c,,,y) € A.”. Upper bounding

{p(c1) > P+ or (not Ey) or Ey or ...or Ey}
M
<1{p(c1) = P+ 6} + l{not By} + Y 1{E,}

m=2



we see that the E[P. ] is upper bounded by

Pr{(C1,Y) ¢ A} + Pr{p(C1) > P+ 6} + > Pr{(Cn,Y) € A}.

m=2

Observe now that the first two terms have probabilities that approach zero as n tends to
infinity by the law of large numbers. The sum consists of M — 1 terms each of which is
upper bounded by 27(X¥)=34 (from the properties of jointly typical sets). Since ¢ was
chosen so that R < I(X;Y) — 3¢, the sum also approaches zero as n tends to infinitity.
Thus, we can find an n such that

E[P,.,,] <4/2

for each m = 1,..., M. This means that

E[i Pom| < (M/2)5

and thus there must exist a particular code with codewords c, ..., cy; such that

> Pom < (M/2)6.

Observe now that in this sum, there can’t be more than M /2 terms whose value exceeds &
(otherwise the sum could not be upper bounded by (M/2)é. Thus if we throw away from
our code the codewords ¢, for which P, ,, > § we will throw away at most M /2 codewords
and be left with at least M/2 = 2"® codewords for each of which P,,, < 4.

Also note that if a codeword c,, had p(c,,) > P + 6 then P,,, would have equaled 1:
the decoder, by construction never decodes such an m. Thus all the codewords that remain
not only have error probility less than 0 but also satisfy the cost constraint. Thus we see
that we have constructed a code with all the required properties and all rates up to the C
in the theorem are achievable.



