
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 29 Information Theory and Coding
Notes on Coding December 21, 2007

These notes summarize and complement the lectures on coding. The section regarding
polynomials over finite fields is included only for the sake of completeness. Nonetheless, I
suspect some of you may find the material of interest.

Codes, Minimum distance

In this note, we will be concerned with codes for a channel whose input alphabet is
of size q; to fix ideas let the input alphabet be X = {0, 1, . . . , q − 1}. Codes for the case
q = 2 are called ‘binary codes,’ on which we mostly restricted our attention to in the class.
Codes for the alphabet X above are called q-ary codes.

A block code of block length n with M codewords is a set of M sequences of length
n from the alphabet X. For example the code C = {000, 011, 110, 101} is a code of block
length 3 with 4 codewords on the alphabet {0, 1}.

Given two sequences x = (x1, . . . , xn) ∈ Xn and y = (y1, . . . , yn) ∈ Xn, the Hamming
distance dH(x,y) is the number of positions in which they differ: dH(x,y) = |{i : xi 6= yi}|.
For example, dH(010, 111) = 2. Note that (i) dH(x,y) = 0 if and only if x = y, (ii)
dH(x,y) = dH(y,x), and (iii) dH(x, z) ≤ dH(x,y) + dH(y, z), so dH is a metric. The
property (iii) is called the triangle inequality.

Given a code C, the minimum distance dmin(C) of the code is defined by

dmin(C) = min
x∈C,y∈C,x6=y

dH(x,y),

the smallest of the Hamming distances between pairs of codewords. For the code C in the
example above, dmin(C) = 2.

Consider a binary symmetric channel with crossover probability ε < 1/2. For this
channel the probability P (y|x) of receiving a sequence y ∈ {0, 1}n when a sequence x ∈
{0, 1}n is transmitted is given by εdH(x,y)(1 − ε)n−dH(x,y), and so P (y|x) is determined
completely by dH(x,y) and furthermore it is a decreasing function of it. Thus, when a
particular y is received, the maximum likelihood decoder will search for the codeword that
is closest to y (with distance measured by the Hamming distance). Also, given a code
with only two codewords, x1 and x2, the probability of error of the maximum likelihood
decoding rule only depends on dH(x1,x2). Therefore, the minimum distance of a code
emerges as a good figure of merit for a code: larger the minimum distance, in general (but
not necessarily), better the code will perform on a binary symmetric channel.

For input alphabets with more than 2 symbols, one can also consider a more general kind
of symmetric channel: a channel with transition probabilities P (i|i) = (1− ε) and P (j|i) =
ε/(q − 1) for i 6= j. One can again see that for a code with only two codewords, dmin(C)
determines the code performance, and that dmin(C) is a good figure of merit for arbitrary
codes when the code is meant to be used on a symmetric channel. The corresponding
figure of merit for codes meant to be used on a Gaussian channel is the minimum Euclidean
distance. We will not consider the Gaussian channel in this note.

If a code C has odd minimum distance d = 2e + 1, then it is possible for a decoder
to correct up to e channel errors. This is a simple consequence of the triangle inequality:
if no more than e errors are made, the received (corrupted) sequence is closer to the

transmitted codeword than any other codeword. Similarly, if a code has even minimum
distance d = 2e+2, then it is possible for a decoder to correct all errors up to e, and detect
(and maybe even correct) e+1 errors: again, if no more than e errors are made the received
sequence is closer to the transmitted codeword than any other; if on the other hand e + 1
errors are made, then we can only be sure that no other codeword is closer.

Since dmin(C) emerges as a good indicator of code performance it is important to find
bounds for it. In various problems in the homework sets we already did this for the case
of the binary codes. Here, we will show them in this more general setting:

Theorem 1 (Sphere packing bound). Any q-ary block code of block length n and
minimum distance d has at most

M =

⌊
qn

/ b(d−1)/2c∑
i=0

(
n

i

)
(q − 1)i

⌋
codewords.

Proof. This follows from the same line of argument as the solution to problem 1 in home-
work 10: Since the code has minimum distance d, it can correct e = b(d − 1)/2c errors.
Thus, the “spheres” of radius e around each codeword are disjoint. Since each such sphere
contains

∑e
i=0

(
n
i

)
(q − 1)i sequences, and the total number of sequences is qn the bound

follows.

Note that the theorem above is of a negative kind, it disallows the existence of codes of
high rates and large minimum distance. The next theorem is in the opposite direction; it
says that for a given minimum distance there are codes of at least a certain rate.

Theorem 2 (Gilbert and Varshamov). Given integers n and d, there exists a code
with block length n, minimum distance dmin ≥ d, with at least

M =

⌈
qn

/ d−1∑
i=0

(
n

i

)
(q − 1)i

⌉
codewords.

Proof. This is the analog of problem 2 in homework 10: from the list of all qn available
sequences start picking codewords. When we pick a sequence as a codeword, delete from
the available list all sequences at distance less than d from it. The procedure is guaranteed
to yield a code with minimum distance at least d, and since for each codeword picked we
delete at most

∑d−1
i=0

(
n
i

)
(q − 1)i sequences from the available list, we can pick at least M

codewords before running out of sequences to pick from.

Note that in the two theorems above the sums go up to different limits, that there is
essentially a factor of two difference in d between the two theorems.

The next two theorems are again of a negative nature. They say that codes with large
minimum distance do not exist.

Theorem 3 (Singleton). A q-ary block code of block length n with M > qk codewords
has minimum distance at most n− k.

Proof. Suppose x1, . . . , xM are the codewords. For each i = 1, . . . ,M , let yi be the first k
letters of xi, so that xi is yi followed by n − k letters. If M > qk, since there are only qk

distinct q-ary sequence of length k, not all the y’s can be distinct, and there must be i and
j such that yi = yj. But then, the corresponding x’s can disagree only on their last n− k
letters, and thus have Hamming distance at most n− k.

2

Theorem 4 (Plotkin). The minimum distance d of a q-ary block code of block length
n with M codewords satisfies

d ≤ n
(
1− 1

q

) M

M − 1
.

Furthermore, if k = blogq Mc, for any 0 ≤ j ≤ k,

d ≤ (n + k − j)
(
1− 1

q

) qj

qj − 1
.

Proof. This is the analog of problem 2 of homework 11. The proof is similar: Since d ≤
dH(x,y) for any x ∈ C, y ∈ C, x 6= y, we have

M(M − 1)d ≤
∑
x∈C

∑
y∈C
y 6=x

dH(x,y) =
∑
x∈C

∑
y∈C

dH(x,y).

Now, dH(x,y) =
∑n

i=1 dH(xi, yi) where xi and yi are the ith digit of x and y and dH(xi, yi)
is equal to 1 if xi and yi are different and zero otherwise. Thus,

M(M − 1)d ≤
n∑

i=1

∑
x∈C

∑
y∈C

dH(xi, yi).

Suppose out of the M codewords Mi,m of them have the letter m as their ith symbol. Let
Si,m denote these codewords. Note that

∑
x∈C

∑
y∈C

d(xi, yi) =

q−1∑
m=0

∑
x∈Si,m

∑
y∈C

d(xi, yi)

=

q−1∑
m=0

∑
x∈Si,m

∑
y∈Sc

i,m

1

=

q−1∑
m=0

Mi,m(M −Mi,m).

Note that

max
z0,...,zq−1P

i zi=M

q−1∑
m=0

zm(M − zm) = M2(1− 1/q),

and thus
∑

x∈C

∑
y∈C d(xi, yi) ≤M2(1− 1/q). Thus,

M(M − 1)dmin ≤ nM2(1− 1/q),

yielding the first part of the theorem.
For the second part, consider the first qk codewords. Classify these codewords grouping

them according to their initial k − j digits. Since there are only qk−j groups, one of the
groups will contain more than qk/qk−j = qj codewords. These codewords, by construction
agree on their initial k−j digits, so the minimum distance within this group will not change
if we remove these letters. Applying the first bound to this subset of codewords we obtain
the bound in the second part.

3

Linear Codes

Consider a code of block length n and rate R. This code has 2nR codewords, and each
codeword is a sequence of n channel symbols. Just to store the codewords at the encoder
then requires space for n2nR letters, which is extremely large even for modest values of n.
The task of the decoder is even harder: given an output sequence y, it has to decide which
of these 2nR codewords is likely to have been input to the channel.

To get around these difficulties, we need to introduce some structure to our codes so
that the codewords can be described not just as a set of 2nR sequences, but in a way that
allows a simpler representation.

One technique that permits simpler representations involves the idea of algebraic fields.
The key idea is to make sure that C is not just an arbitrary subset of Xn, but is a vector
space. Recall the definition of vector spaces in Rn: A subset S of Rn is a vector space
if for any two elements x = (x1, . . . , xn) and y = (y1, . . . , yn) of S and for any two real
numbers a and b, ax + by is also an element of S. We thus see that the notion of vector
space is entangled with the notion of addition and multiplication of real numbers. If we
can somehow introduce these notions of addition and multiplication to the set X of channel
inputs, then we can talk about codes that are vector spaces. The proper algebraic structure
to impose on X is that of a field.

To talk about fields, one first needs to talk about groups: That a set X together with
an operation + forms a group means the following: given x and y from X, one can form
x + y which is also in X and this ‘addition’ operation has the following properties:

Associativity: (x + y) + z = x + (y + z).

Identity: there exists an element in X, denoted by 0 and called the identity element,
such that x + 0 = 0 + x = x for all x ∈ X.

Inverse: for all x ∈ X there exists (−x) ∈ X such that x + (−x) = (−x) + x = 0.

A group is said to be Abelian (or commutative) if in addition to the above properties we
also have that x + y = y + x for all x and y.

A finite field is a finite set X of at least two elements, and two operations called addition
(+) and multiplication (·), with the the following properties:

The set X and the operation + form an Abelian group.

The set of nonzero elements (i.e., X without the identity element 0 of the operation
+) and · form an Abelian group.

The distributive law is satisfied: for all x, y, z in X

(x + y) · z = x · z + y · z.

We will denote the additive identity element by 0 and the multiplicative identity element
by 1. The additive inverse of a will be denoted by (−a) and the multiplicative inverse of
a by a−1. Note that the set of real numbers with the usual addition and multiplication
satisfies the above properties. Also note that the set {0, 1} with modulo-2 addition and
multiplication also satisfies the above properties. From the properties above, one can easily
derive some others:

x · 0 = 0 · x = 0 for all x ∈ X,

4

x · y 6= 0 for x 6= 0 and y 6= 0,

−(x · y) = (−x) · y = x · (−y) for all x and y,

x 6= 0 and x · y = x · y′ imply y = y′.

Suppose now that the input alphabet X is equipped with operations + and · so that
(X, +, ·) form a field. In the class we considered the case X = {0, 1} the modulo-2 addition
and multiplication.

Given a field (X, +, ·) we can consider Xn as a vector space by defining vector addition
and scalar multiplication: for vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) of Xn define
their sum x+y as z = (z1, . . . , zn) where zi = xi + yi; for the vector x = (x1, . . . , xn) ∈ Xn

and a ∈ X define a · x as the vector z = (z1, . . . , zn) with zi = a · xi.
A block code C of block length n is said to be a linear code, if it is a vector space: for

any two elements x and y of C and any two elements a and b of X, a ·x + b ·y is also in C.
In problem 4 of homework 10 we proved that a binary linear block code contains 2k

codewords for some integer k. This result generalizes to q-ary linear block codes:

Theorem 5. If X = {0, . . . , q − 1} is a field, and C is a linear q-ary block code, Then C
has qk elements for some integer k.

One way to generate a linear block code of length n with qk elements is to use a linear
transformation: The encoder stores an n × k matrix G whose elements are in X. (Note
the difference in storage requirement: nk versus nqk.) It accepts messages of the form
u = (u1, . . . , uk) where each ui belongs to X. Given a message u to convey, the encoder
computes x = Gu, i.e.,

xi =
k∑

j=1

Gij · uj, i = 1, . . . , n,

and transmits the sequence x = (x1, . . . , xn). In the above equation, all sums and products
are done using the field operations. One can prove (as in problem 4 of homework 10) that
for any linear code C there exists such a matrix G.

For a sequence x = (x1, . . . , xn) we define the Hamming weight of this sequence wH(x)
as the number of non-zero xi’s: wH(x) = |{i : xi 6= 0}|. If (X, +) form a group (which is the
case when (X, +, ·) is a field) the Hamming distance between x and y can be represented
as dH(x,y) = wH(x− y). This is the case since xi = yi if and only if xi − yi is zero.

Theorem 6. For a linear code C,

dmin(C) = min
x∈C,x6=(0,...,0)

wH(x).

The right hand side is called the minimum weight of the code.

Proof. By linearity 0 = (0, . . . , 0) is a codeword. Since for any sequence x, wH(x) =
dH(x,0), the weight of any non-zero codeword is an upper bound on dmin(C) and thus the
left hand side is less than or equal to the right hand side. On the other hand, for the two
codewords x, y, at distance dmin(C) from each other, z = x − y is also a codeword (by
linearity), z 6= 0 and, dmin(C) = dH(x,y) = wH(z). Thus, the left hand side is greater than
or equal to the right hand side. Combining the two statements we obtain the result.

It is clear that the negative results of the previous section about codes in general
(Theorems 1, 3 and 4) apply also to linear codes.

It is somewhat of a surprise that the positive theorem (Theorem 2) is also valid for
linear codes.

5

Theorem 7. There exists a linear code with blocklength n, with M ≥ qk codewords and
minimum distance dmin ≥ d provided that

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k.

Proof. Let r = n − k. We will find an r × n matrix H with the property that any set of
d− 1 of its columns is linearly independent. We will define the code as the set of x ∈ Xn

such that Hx = 0. It is easy to check that such a code is linear. Observe further: (i) an
r × n matrix H is of rank at most r, the space of solutions have is of dimension at least
n− r and thus the code has at least qn−r codewords. (ii) The code has minimum distance
d or more: for any nonzero x of weight d − 1 or less, Hx is a linear combination of d − 1
or fewer columns of H and thus cannot equal to zero by the linear independence of such a
set of columns. Thus any nonzero codeword has weight d or more, so dmin ≥ d.

It remains to construct a matrix with the lineary independence propery. We will do
this by choosing the columns one at a time. Suppose i columns have already been chosen
such that any subset of d − 1 or fewer columns are linearly independent. The number of
distinct linear combinations of these i columns taken d− 2 or fewer at a time is(

i

1

)
(q − 1) +

(
i

2

)
(q − 1)2 + · · ·+

(
i

d− 2

)
(q − 1)(d− 2).

(the binomial coefficient
(

i
k

)
gives the number of ways to choose k columns and (q − 1)k

gives the number of ways to choose the non-zero coefficients of these k columns in the
combination.) If this number if strictly less than qr − 1, then we can find a non-zero r
vector that is distinct from all these combinations and let it be the i + 1th column. Since
the new column is different than the d − 2 combinations of the previous columns the set
of i + 1 columns have the property that any d− 1 of them are linearly independent. Thus
we can keep the iteration to pick all n columns as long as the condition of the theorem is
satisfied.

We will now show that restricting ourselves to linear codes does not prevent us from
reaching the capacity of symmetric channels:

Theorem 8. If the input alphabet X = {0, . . . , q−1} of a symmetric channel with capacity
C is a field, then for any rate R < C, and any ε > 0, there is a linear code with rate at
least R and error probability at most ε.

Proof. Recall the random coding proof of the fact that there exist codes which achieve
capacity: In that proof, one generated M codewords X(1), . . . ,X(M), each picked inde-
pendently according to the distribution p(x) = p(x1) . . . p(xn), and p is chosen to maximize
the mutual information. The proof then proceeded to analyze the probability of error by
assuming that X(m) is the transmitted sequence, Y the received sequence and bounding
the probability that for m′ 6= m, the pair (X(m′),Y) is jointly typical. What made the
proof work was that for any m and m′ 6= m, the codewords X(m) and X(m′) were chosen
independently; i.e., that the codewords were pairwise independent. The full independence
of the M codewords was not necessary in the proof.

We will now show that capacity approaching linear codes exist by a random coding
argument which generates X(1), . . . ,X(M) as the codewords of a random linear code, and
showing that Pr(X(m) = x) = p(x) where p(x) = p(x1) . . . p(xn), and p maximizes mutual
information, and the codewords are pairwise independent. By the remark above, this is
sufficient to prove our theorem, as we can simply refer to the proof of the original random
coding theorem. To do this, first observe

6

(i) for a q-ary symmetric channel, the input distribution that achieves capacity is the
uniform distribution on the inputs. For this distribution, p(x) = q−n.

(ii) if x(1), . . . ,x(M) are the codewords of a code C, then, for any fixed vector v, the
code C̃ whose codewords are x̃(m) = x(m) + v is equally good as the code C. (If the
code C̃ is used in a communication system, then, at the receiver, we can first subtract
v from the received sequence y, and this would make things as if the code C were
being used.)

Secondly, choose a n × k matrix G whose entries are chosen independently and uni-
formly from the q-ary alphabet, and a vector v whose entries are chosen independently and
uniformly over the q-ary alphabet. Consider now a code whose codewords are {Gu + v :
u ∈ Xk}, and denote the codeword that corresponds to u by X(u). Note that because of
observation (ii) above, this code has the same performance as a linear code with generator
matrix G. To complete the proof we only have to show that for each u, and x,

Pr(X(u) = x) = q−n,

and for each u, x, u′ and x′ with u′ 6= u,

Pr(X(u) = x,X(u′) = x′) = q−2n.

To see these, first note that there are qnk+n equally likely ways of choosing G and v,
and for each choice of G there is exactly one choice of v which will make X(u) equal to
any particular value x (i.e., v = x − Gu). Since there are qnk choices of G this gives
Pr(X(u) = x) = qnk/qnk+n = q−n. Next, suppose u 6= u′, and suppose they differ (possibly
among others) in the ith position. Observe that

X(u)−X(u′) = G(u− u′),

and for any choice of the k − 1 columns g1, . . . ,gi−1,gi+1, . . . ,gk of the matrix G there is
exactly one choice of the column gi which will make the above difference any fixed value
w, (i.e., gi = (ui− u′

i)
−1

[
w−

∑
j 6=i gj(uj − u′

j)
]
). Now, given x and x′, let w = x− x′ and

observe
Pr(X(u) = x,X(u′) = x′) = Pr(X(u) = x,X(u′)−X(u) = w),

and there are qn(k−1) ways of choosing the columns g1, . . . ,gi−1,gi+1, . . . ,gk, and once they
are chosen, gi is determined uniquely by w, and then, v is determined uniquely by x. Thus,
for any x and x′ there are qn(k−1) choices of G and v to make X(u) = x and X(u′) = x′,
and so

Pr(X(u) = x,X(u′) = x′) = qn(k−1)/qnk+n = q−2n,

as we were required to show.

Reed–Solomon Codes

From Theorem 3 we know that any q-ary block code of block length n with qk codewords
has minimum distance d at most n + 1− k.

One can easily see that the code C = {0 . . . 0, 1 . . . 1, . . . , (q − 1) . . . (q − 1)} meets the
bound with equality (k = 1, d = n). This particular code is called the repetition code.
Also, the code C = Xn also meets the bound (k = n, d = 1). Are there any codes apart
from these trivial examples which meet the Singleton bound?

7

The answer to the question above turns out to be yes. There is a class of codes called
the Reed–Solomon Codes which meet the bound with equality for arbitrary n and k, with
one caveat: the block length n needs to be less than or equal to q. In this section we will
see how to construct Reed–Solomon codes.

Consider and encoder that operates as follows: Fix n distinct values in X, say, α1, . . . , αn.
To send a given message u = (u1, . . . , uk) ∈ Xk, the encoder constructs the polynomial
u(D) = u1+u2D+ · · ·+ukD

k−1 and evaluates this polynomial at α1, . . . , αn. The sequence
sent over the channel is the result of these evaluations, x1 = u(α1), . . . , xn = u(αn).

Let us see if this code is linear. Given two codewords x and y generated by messages
u and v, it is easy to see that the message a ·u + b ·v yields the codeword a ·x + b ·y, and
thus the code is linear.

Let us see what the minimum distance of this code is. Suppose u is a non-zero sequence,
so that u(D) is not the zero polynomial. Note that u(D) is of degree at most k − 1 so it
can have at most k− 1 roots. This means that at most k− 1 of the xi’s are zero, and thus
at least n − k + 1 of the xi’s are non-zero. Thus, the minimum weight of the code is at
least n− k + 1, and so, dmin(C) ≥ n− k + 1. From the Singleton bound we conclude that
dmin(C) = n− k + 1.

The only step in doubt in the above paragraph is that a degree k polynomial has at
most k roots. We know this to be true for polynomials with complex coefficients, but we
did not prove this result for polynomials over finite fields. Nonetheless, the result is true,
as the next section will show.

Polynomials over Finite Fields

In this section we will prove just enough things about finite fields that will suffice to
conclude that a polynomial of degree k can have at most k roots. For a full treatment
of finite fields in the smallest number of pages, one can refer to E. Artin, Galois Theory,
Notre Dame Mathematical Lectures, 2nd ed., 1946, also published by Dover Publications.

An expression of the form fnD
n + fn−1D

n−1 + · · · + f0, denoted f(D), is called a
polynomial of degree n over X if the coefficients fn, . . . , f0 are all elements of X and if the
leading coefficient fn is nonzero. It is convenient to consider the coefficients fi associated
with a degree n polynomial to be defined for all i ≥ 0 but to satisfy fi = 0 for i > n. Thus,
we can consider a polynomial over X as being a way to represent an infinite sequence of
field elements f0, f1, . . . when only finitely many terms in the sequence are nonzero. The
degree of the polynomial is the largest n for which fn is nonzero. In the special case of the
0 polynomial when all fn are zero, we say that the 0 polynomial has degree zero.

Two polynomials are said to be equal if they correspond to the same sequence of co-
efficients. For example, over the binary field X = {0, 1} with modulo-2 addition and
multiplication, the polynomials f(D) = D + D2 + D3 and g(D) = D are different, even
though f(0) = g(0) = 0 and f(1) = g(1) = 1. Thus, as functions over X, f and g are the
same, but as polynomials they are different.

The sum and product of two polynomials are defined in the usual way:

(f + g)(D) =
∑

i

(fi + gi)D
i,

(f · g)(D) =
∑

i

(∑
j

fj · gi−j

)
Di.

It is easy to see that the degree of f +g is less than or equal to the maximum of the degrees
of f and g, and for nonzero polynomials f and g, f · g is nonzero and the degree of f · g

8

is equal to the sum of the degrees of f and g. It is also easy to see that f · 0 = 0 for any
polynomial f .

The multiplication of a polynomial f by a field element a ∈ X is defined by

(a · f)(D) =
∑

i

(a · fi)D
i,

and similarly, the negative of a polynomial is defined by

(−f)(D) =
∑

i

(−fi)D
i.

It is easy to verify that under addition, the set of polynomials forms an Abelian group. It
can also be seen that polynomial multiplication is both associative and commutative and
that the distributive law (f + g) · h = f · h + g · h holds. The polynomials over a field is
not a field, however, because of the lack of a multiplicative inverse.

Some elementary properties of polynomial arithmetic that will be useful are:

−(f · g) = (−f) · g = f · (−g), (1)

f · g = f · h and f 6= 0 imply g = h. (2)

From the above it seems that the polynomials have properties just like that of integers.
The analogy goes even further: even though in general we cannot divide one polynomial by
another and get a polynomial quotient, we can perform division if we are willing to tolerate
a remainder term.

Theorem 9 (Euclidean Division Algorithm). Let f(D) and g(D) be two polynomials
over X and let g(D) have degree at least 1. Then, there exist unique polynomials h(D)
and r(D) over X for which

f(D) = g(D) · h(D) + r(D)

where degree of r(D) is less than that of g(D).

Proof. We first show how to find h and r and then show that they are unique. Let f(D)
have degree n and g(D) have degree m. If n < m, set h(D) = 0 and r(D) = f(D). If
n ≥ m, we divide g(D) into f(D) by the same procedure we use for ordinary polynomials
over the real-number field, letting h(D) to be the quotient, and r(D) the remainder. That
is, the leading term of h(D) is fng

−1
m Dn−m. This leading term is multiplied by g(D) and

subtracted from f(D), and the next term of h(D) is found by starting to divide g(D) into
this remainder. When the remainder has smaller degree than g(D) it is taken as r(D).
More formally, the algorithm works as follows:

(i) Initialize: set h(D) = 0,

(ii) Let n be the degree of f and m the degree of g. If n < m, set r = f , stop.

(iii) Set t(D) = fn · g−1
m Dn−m. Let h← h + t, f ← f − t · g. Goto (ii).

Since the degree of f is decreasing at each iteration, the algorithm is guaranteed to stop.
It is also clear that at the end of the procedure h and r satisfy the equation of the theorem.

Suppose now that there were two solutions the equation given by h(D), r(D) and
h′(D), r′(D). Then

g(D) · h(D) + r(D) = g(D) · h′(D) + r′(D)

g(D) · [h(D)− h′(D)] = r′(D)− r(D).

Now, r′−r has a degree less than that of g, and thus h−h′ = 0. But this implies r′−r = 0,
and it follows that the solution is unique.

9

We can use the Euclidean division algorithm to investigate the existence of factors and
roots of a polynomial f(D) over X. A polynomial g(D) is said to be a factor of (or divides)
another polynomial f(D) if there is a polynomial h(D) over X such that

f(D) = g(D) · h(D).

In other words g divides f if the Euclidean division algorithm stops with remainder term
r = 0. A polynomial f over X is called reducible if there are two polynomials g and h over
X, each of degree at least 1, for which f = g · h. A polynomial is called irreducible if is
not reducible. The irreducible polynomials play the role the prime numbers play among
integers.

It is often useful to factor a polynomial into irreducible factors. In doing so, there is
a certain amount of ambiguity, since given one factorization, we can always multiply one
of the factors by an arbitrary non-zero field element and multiply another factor by the
inverse of the field element, not changing the product. A monic polynomial is defined as a
polynomial whose leading coefficient is 1, and we avoid the above ambiguity by factoring
a polynomial into a field element times a product of monic irreducible factors.

Theorem 10 (Unique Factorization). A polynomial f(D) over a given field X has a
unique factorization into a field element times a product of monic irreducible polynomials
over the field, each of degree at least 1.

Proof. Clearly, the field element is unique, and is just fn where n is the degree of f(D).
Thus we can restrict our attention to monic polynomials. Assume that the theorem is not
true, and that there is some lowest degree monic polynomial f that can be factored in two
ways, as

f(D) = a1(D) . . . ak(D) = b1(D) . . . bj(D)

where the a’s and b’s are monic and irreducible.
All the a’s must be different from all the b’s, otherwise a polynomial could be factored

out, leaving two factorizations of a lower degree monic polynomial than f . Suppose without
loss of generality, that the degree of b1(D) is less than or equal to that of a1(D). We then
have

a1(D) = b1(D) · h(D) + r(D)

where r(D) is nonzero (since a1 is irreducible) has degree less than b1(D) and a1(D).
Substituting this in the factorization of f above, we have

r(D) · a2(D) . . . ak(D) = b1(D) · [b2(D) . . . bj(D)− h(D) · a2(D) . . . ak(D)].

Factoring r and multiplying by a field element to make the factors monic, we have two
factorizations of a lower degree monic polynomial than f(D), and the irreducible polynomial
b1 does not appear on the left hand side. Thus we have a contradiction and the theorem is
true.

An element α of the field X is said to be a root of a polynomial f over that field if
f(α) = 0.

Theorem 11. An element α of a field X is a root of a non-zero polynomial f(D) over X
if and only if D−α is a factor of f(D). Furthermore, if f(D) has degree n, at most n field
elements are roots of f(D).

10

Proof. From the Euclidean division algorithm, we have

f(D) = (D − α) · h(D) + r(D).

Since D−α has degree 1, r(D) has degree zero, and is just a field element r0. Substituting
α for D, we have f(α) = r0. Thus, if f(α) = 0 then r0 = 0 and D − α is a factor of f(D).
Conversely, if D − α is a factor of f(D), we have r0 = 0 and f(α) = 0.

Now, factor f(D) into a field element times a product of irreducible factors of degree
at least 1. Since the degree of f(D) is the sum of the degrees of the factors, there are at
most n factors. These are unique, and hence f(D) has at most n roots in the field.

With this theorem, the only doubt about the minimum distance of Reed–Solomon codes
is cleared.

The theory of finite fields establishes that fields of all sizes of the form pm where p is a
prime and m is a non-negative integer exist, and that these are the only finite fields. Thus,
one can construct Reed-Solomon codes for any X which has pm elements for some prime
p, and integer m > 0.

The usual application of Reed-Solomon codes is to binary channels. Here, one considers
m uses of the binary channel as one use of a channel with input alphabet X = {0, 1}m.
This alphabet has q = 2m elements, and thus can be made into a field by equipping it with
proper addition and multiplication operations. One then constructs a Reed–Solomon code
for this field.

11

