
Addendum to Chapter 11:
Orthogonal Filter Banks

1 Two-Channel Orthogonal Expansions and Perfect Reconstruc-
tion

The Haar and sinc expansions of discrete-time signals that we have seen earlier are both
orthonormal expansions that can be implemented by perfect reconstruction filter banks.
The goal of the present section is to show that these two examples are not the only
expansions with this property, but that for a wide class of orthonormal expansions we can
always find a filter bank that implements the expansion.

Let {ϕk[n]}k∈Z be a basis of the form

ϕ2k[n] = ϕ0[n− 2k]
ϕ2k+1[n] = ϕ1[n− 2k]

whose elements satisfy the orthonormality conditions

〈ϕi[n− 2k], ϕj [n− 2l]〉 = δ[i− j]δ[k − l], i, j ∈ {0, 1}. (1)

Consider now the filter bank of Figure 1 with analysis and synthesis filters

gi[n] = ϕi[n] and hi[n] = gi[−n], i = 0, 1. (2)

The goal of this section is to show that if (1) and (2) hold, then this filter bank has perfect
reconstruction, i.e., x̂[n] = x[n].

As we have previously seen, the signals at the output of the filter bank’s synthesis
filters are

Ui(z) =
1
2
Gi(z) [Hi(z)X(z) +Hi(−z)X(−z)] , i = 0, 1. (3)
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Figure 1: A General two-channel orthogonal FIR filter bank.

Since hi[n] = gi[−n], Hi(z) = Gi(z−1). Using this together with (3) we can write the
reconstructed signal X̂(z) = U0(z) + U1(z) in matrix form as

X̂(z) =
1
2
[
G0(z) G1(z)

] [ G0(z−1) G0(−z−1)
G1(z−1) G1(−z−1)

] [
X(z)
X(−z)

]
.

The reconstruction is perfect (X̂(z) = X(z) for all X(z)) if and only if

[
G0(z) G1(z)

] [ G0(z−1) G0(−z−1)
G1(z−1) G1(−z−1)

]
=
[

2 0
]
. (4)

We will now show that this last equality indeed follows from properties (1) and (2).
Let us start by defining the autocorrelation sequence pi[n] of gi[n] as

pi[l] = 〈gi[n], gi[n− l]〉, i = 0, 1. (5)

Then qi[n] = pi[2n], the downsampled version of the autocorrelation sequence, satisfies

qi[n] = δ[n]. (6)

This follows from the orthonormality property (1) of gi[n] and from the definition of pi[n].
Note now that that another way of writing (5) is pi[n] = gi[n] ∗ gi[−n], or, after taking the
Z-transform, Pi(z) = Gi(z)Gi(z−1). The Z-transform of qi[n] is then, making use of (6),

Qi(z) =
1
2

[
Gi(z1/2)Gi(z−1/2) +Gi(−z1/2)Gi(−z−1/2)

]
= 1,

or equivalently

2Qi(z2) = Gi(z)Gi(z−1) +Gi(−z)Gi(−z−1) = 2, i = 0, 1, (7)
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where we have used the downsampling property of the Z-transform. In a similar way we
can define the crosscorrelation sequence p01[n] of g0[n] and g1[n] as

p01[l] = 〈g0[n], g1[n− l]〉,

and let q01[n] = p01[2n]. Then we have

q01[n] = 0 for all n,

where this last equality follows again from the orthonormality property (1). Proceeding
in a similar way as for qi[n] above, we obtain

2Q01(z2) = G0(z)G1(z−1) +G0(−z)G1(−z−1) = 0. (8)

We can now combine (7) and (8) in matrix form to get[
G0(z−1) G0(−z−1)
G1(z−1) G1(−z−1)

]
︸ ︷︷ ︸

GT
m(z−1)

[
G0(z) G1(z)
G0(−z) G1(−z)

]
︸ ︷︷ ︸

Gm(z)

=
[

2 0
0 2

]
. (9)

The first row of Gm(z) can be written in the following somewhat complicated form:[
G0(z) G1(z)

]
=
[

2 0
] 1

2
Gm(z). (10)

Since, from (9), (GT
m(z−1))−1 = (1/2)Gm(z), we can multiply both sides of (10) on the

right by GT
m(z−1) to finally obtain[

G0(z) G1(z)
]
GT

m(z−1) =
[

2 0
]
,

which is precisely the condition for perfect reconstruction found in (4).

2 Tree Structured Filter Banks and Wavelet Transform

Tree structured filter banks can be constructed using a cascade of two-channel filter banks
as shown in Figures 2 and 3. The structure given in Figures 2 and 3 is called a constant-
Q or constant relative bandwidth filter bank since the bandwidth of each channel divided
by its center frequency is a constant. This type of cascaded filter bank is also called an
octave-band filter bank.

If the two-channel filter bank used in a tree structured filter bank is orthonormal, then
it implements what is called an orthonormal discrete-time wavelet series, or sometimes
discrete-time wavelet transform.
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x[n]
H1(z) ↓ 2

H0(z) ↓ 2

Stage 1

H1(z) ↓ 2

H0(z) ↓ 2
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. . .

Figure 2: The analysis part of a tree-structured filter bank consisting of a
cascade of J two-channel filter banks.

↑ 2 G1(z)

↑ 2 G0(z)

+

Stage J

↑ 2 G1(z)

↑ 2 G0(z)

+

Stage J−1

· · ·

↑ 2 G1(z)

↑ 2 G0(z)

+

Stage 1

x̂[n]

Figure 3: Reconstruction (synthesis) part of the tree structured filter bank
whose analysis part is shown in Figure 2.
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Let us consider what happens if the filters hi[n] and gi[n] in Figures 2 and 3 are the
Haar filters, i.e., gi[n] = hi[−n], i = 0, 1, and

G0(z) =
1√
2

(1 + z−1), G1(z) =
1√
2

(1− z−1).

Let us take for example J = 3, that is, we will split the original signal x[n] three times.
Before we continue, recall the multirate identity illustrated again in Figure 4. Using this

G(z) ↑ 2 ≡ ↑ 2 G(z2)

Figure 4: Upsampling identity revisited.

identity, we can write the equivalent filters of Figure 6 as represented in Figure 7 as follows.

G
(1)
1 (z) = G1(z) =

1√
2

(1− z−1)

G
(2)
1 (z) = G0(z)G1(z2) =

1
2

(1 + z−1 − z−2 − z−3)

G
(3)
1 (z) = G0(z)G0(z2)G1(z4) =

1
2
√

2
(1 + z−1 + z−2 + z−3 − z−4 − z−5 − z−6 − z−7)

=
2∏

k=0

G0(z2k
).

In general,

G
(j)
0 (z) = G

(j−1)
0 (z)G0(z2J−1

) =
J−1∏
k=0

G0(22k
)

G
(j)
1 (z) = G

(j−1)
0 (z)G1(z2j−1

) = G1(z2j−1
)

j−2∏
k=0

G0(z2k
).

Now, let us examine how this works as a transform. Consider a two-channel orthogonal
filter bank with analysis filters h0[n] and h1[n] and synthesis filters gi[n] = hi[−n], i = 0, 1.
Then we can write

x[n] =
∑
k∈Z

y
(1)
0 [k]g(1)

0 [n− 2k] +
∑
k∈Z

y
(1)
1 [k]g(1)

1 [n− 2k]

=
∑
k∈Z

x
(1)
0 [2k]g(1)

0 [n− 2k] +
∑
k∈Z

x
(1)
1 [2k]g(1)

1 [n− 2k], (11)
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Figure 5: Analysis part of octave filter bank with J = 3 levels.
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Figure 6: Synthesis part of octave filter bank with J = 3 levels.
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↑ 8

↑ 8

↑ 4

↑ 2

1√
2
[ 1 1 1 1 1 1 1 1 ]

1
2 [ 1 1 1 1 −1 −1 −1 −1 ]

1
2
√

2
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1
2
√

2
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v
(3)
1 [n]

v
(2)
1 [n]

v
(1)
1 [n]

x̂[n]

Figure 7: Octave-band synthesis filter bank, equivalent form for Haar-based
two-channel filter bank.

where g(1)
i [n] = gi[n], i = 0, 1. In the octave-band filter bank, only the low-pass branch is

further split and therefore only the first term in (11) needs to be modified to account for the
split in the filter bank. Therefore we can write the first term in (11) with h(1)

i [n] = g
(1)
i [−n],

i = 0, 1,∑
k∈Z

x
(1)
0 [2k]g(1)

0 [n− 2k] =
∑
k∈Z

x
(1)
0 [2k]h(1)

0 [2k = n]

=
∑
k∈Z

x
(2)
0 [22k]g(2)

0 [n− 22k] +
∑
k∈Z

x
(2)
1 [22k]g(2)

1 [n− 22k]

where

G
(2)
0 (z) = G0(z)G0(z2),

G
(2)
1 (z) = G0(z)G1(z2),

H
(2)
i (z) = G

(2)
i (z−1), i = 0, 1,

and

x
(2)
0 [22k] = 〈h(2)

0 [22k − l], x[l]〉

x
(2)
1 [22k] = 〈h(2)

1 [22k − l], x[l]〉.
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If we proceed in this manner, we get

x[n] =
J∑

j=1

∑
k∈Z

Xj [2k + 1]g(j)
1 [n− 2jk] +

∑
k∈Z

X(J)[2k]g(J)
0 [n− 2Jk],

where

X(j)[2k + 1] = 〈h(j)
0 [2jk − l], x[l]〉, j = 1, · · · , J

X(J)[2k] = 〈h(J)
0 [2Jk − l], x[l]〉,

and h
(j)
i [n] = g

(j)
i [−n] as before. This is called the discrete-time wavelet transform.


