
Signal Processing for Communications EPFL Winter Semester 2007/2008
Prof. Suhas Diggavi Handout # 40, Monday, January 14, 2008

Solutions: Homework Set # 9

Problem 1

(a) In order to apply the Noble identities for downsampling, we need to first rewrite the given
filterbank as shown in Figure 1. Here, the downsamplers after the first two filters h0[n]
have been replaced by two “cloned” downsamplers after the branch.

Now, repeated application of the Noble identities results in the equivalent system shown
on Figure 2.

h1[n]

h0[n]

↓ 2

↓ 2

↓ 2

h1[n]

h0[n]

↓ 2

↓ 2

↓ 2

h1[n]

h0[n]

↓ 2

↓ 2

x[n]

Figure 1: This is the same as the original analysis filter bank, except that the downsamplers before
the split branches have been replaced by two downsamplers after the splits.

H1(z)

H0(z)

↓ 2

H1(z
2)

H0(z
2)

↓ 4

H1(z
4)

H0(z
4)

↓ 8

↓ 8

x[n]

Figure 2: Analysis filter bank after applying the Noble identities.

1

Comparing Figure 2 with the desired single-level filter bank (Figure 2 in the assignment),
we obtain the following relationships (expressed in the Z-domain):

H(1)(z) = H1(z)

H(2)(z) = H0(z)H1(z
2)

H(3)(z) = H0(z)H0(z
2)H1(z

4)

H(4)(z) = H0(z)H0(z
2)H0(z

4).

In the time domain, Hi(z
L) corresponds to hi[n] upsampled by a factor L. Computing

the respective convolutions, we find the following expressions for h(i)[n], i = 1, . . . , 4.

h(1)[n] =
1√
2

1 if n = 0

−1 if n = −1

0 otherwise,

h(2)[n] =
1

2

1 if n ∈ {−1, 0}
−1 if n ∈ {−3,−2}
0 otherwise,

h(3)[n] =
1

2
√

2

1 if n ∈ {−3, . . . , 0}
−1 if n ∈ {−7, . . . ,−4}
0 otherwise,

h(4)[n] =
1

2
√

2

{

1 if n ∈ {−7, . . . , 0}
0 otherwise.

(b) The plots of the filters h(i)[n], i = 1, . . . , 4are shown on Figure 3. Roughly speaking,
h(1)[n] covers the upper half of the spectrum. h(2)[n] then covers the “upper half of the
lower half” of the spectrum, and so on. h(4)[n] covers the lowest 1/8th of the spectrum.
Observe that the more of the spectrum covers, the shorter is the support of its impulse
response, and vice versa. In other words, Precision in frequency and precision in time are
traded off against each other.

(c) In 8 time units, the first branch of the system obtained in (a) produces 4 output values,
the second branch produces 2 output values, and the last two branches each produce one
output.

Using delay elements, we can split the first branch, which produces 4 outputs in 8 time
units, into 4 branches, each producing one output in 8 time units, as illustrated on Figure 4.
Note that the delays are all negative, so they constitute anticausal elements. The resulting
equivalent filters are

h̃(1)[n] = h(1)[n] ∗ δ[n] = h(1)[n]

h̃(2)[n] = h(1)[n] ∗ δ[n + 2] = h(1)[n + 2]

h̃(3)[n] = h(1)[n] ∗ δ[n + 4] = h(1)[n + 4]

h̃(4)[n] = h(1)[n] ∗ δ[n + 6] = h(1)[n + 6].

It is easy to verify that the outputs of these 4 new branches correspond to the four outputs
produced by the original branch in 8 time units.

2

−3.1416 0 3.1416
0

0.5

1

1.5
H(1)(ejω)

−3.1416 0 3.1416
0

0.5

1

1.5

2
H(2)(ejω)

−3.1416 0 3.1416
0

0.5

1

1.5

2

2.5
H(3)(ejω)

−3.1416 0 3.1416
0

0.5

1

1.5

2

2.5

3
H(4)(ejω)

Figure 3: 1024-point FFT plots of the filters h(i)[n], i = 1, . . . , 4, from Problem 1(a). Note how the
filters divide the spectrum.

h(1)[n] ↓ 8

z

z2

z3

↓ 8

↓ 8

↓ 8

Figure 4: For Problem 1(c), The first branch is split up using delays into four branches, each producing
one output every 8 time instants. Properly speaking, the delay elements are not delays but rather “look-
ahead” elements, since the delays are negative.

3

Similarly, we can split up the second branch as

h̃(5)[n] = h(2)[n]

h̃(6)[n] = h(2)[n + 4].

The last two branches remain unaltered:

h̃(7)[n] = h(3)[n]

h̃(8)[n] = h(4)[n].

(d) It is easy to express y[n] in terms of x[n]. Let z(i)[n] = x[n] ∗ h̃[n]. Then y[i] =
D8(z

(i)[n]) |n=0= z(i)[0], i. e.,

y[i] = z(i)[0] =
∑

m

x[m]h(i)[0 − m] =
7∑

m=0

x[m]h(i)[−m].

Therefore, we have

y[0] =
1√
2
[x[0] − x[1]],

y[1] =
1√
2
[x[2] − x[3]],

y[2] =
1√
2
[x[4] − x[5]],

y[3] =
1√
2
[x[6] − x[7]],

y[4] =
1

2
[x[0] + x[1] − x[2] − x[3]],

y[5] =
1

2
[x[4] + x[5] − x[6] − x[7]],

y[6] =
1

2
√

2
[x[0] + x[1] + x[2] + x[3] − x[4] − x[5] − x[6] − x[7]],

y[7] =
1

2
√

2
[x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7]].

Writing the above equations is matrix form, we obtain

Q =

1√
2

−1√
2

0 0 0 0 0 0

0 0 1√
2

−1√
2

0 0 0 0

0 0 0 0 1√
2

−1√
2

0 0

0 0 0 0 0 0 1√
2

−1√
2

1
2

1
2

−1
2

−1
2 0 0 0 0

0 0 0 0 1
2

1
2

−1
2

−1
2

1
2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
−1
2
√

2
−1
2
√

2
−1
2
√

2
−1
2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2

.

Remark. We have changed the indices of the input and output vectors from [1, . . . , 8] to
[0, 1, . . . , 7] for simplicity.

4

(e) One can easily check that the inner product of each two distinct rows of Q is zero, and
the norm of each row is 1. More formally,

QQ∗ = I8.

Therefore this filter-bank operates as an orthonormal projection. This shows that we can
use exactly the same filter-bank to reverse the operation.

(f) This is not difficult to observe the diagonal structure of the first four rows of Q. This

structure suggests to write this sub-matrix as a Kronecker product as

1√
2

−1√
2

0 0 0 0 0 0

0 0 1√
2

−1√
2

0 0 0 0

0 0 0 0 1√
2

−1√
2

0 0

0 0 0 0 0 0 1√
2

−1√
2

= I4 ⊗ q1,

where q1 = 1√
2
[1 − 1]. Similarly, the next two rows are structured as

[
1
2

1
2

−1
2

−1
2 0 0 0 0

0 0 0 0 1
2

1
2

−1
2

−1
2

]

= I2 ⊗
[

1
2

1
2

−1
2

−1
2

]

= I2 ⊗ q1 ⊗ q0.

The 7th row can be also rewritten in Kronecker product form as

[
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
−1
2
√

2
−1
2
√

2
−1
2
√

2
−1
2
√

2

]

= I1 ⊗ q1 ⊗ q0 ⊗ q0.

Finally, the last row can be written as

[
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2

]

= I1 ⊗ q0 ⊗ q0 ⊗ q0.

5

(g) Using the structure found in part (f), we can show that for general J , the 2j × 2J sub-
matrix induced by rows 2J − 2j+1 + 1, . . . , 2J − 2j can be written as

I2j ⊗ q1 ⊗ q0 ⊗ · · · ⊗ q0
︸ ︷︷ ︸

J−j−1

,

and the last row is

I1 ⊗ q0 ⊗ · · · ⊗ q0
︸ ︷︷ ︸

J

.

Using the MATLABfiles, this matrix can be constructed for general J as follows.

>> function H=WT(J)

>> % In this m-file we produce the transfer matrix of the tree-structutred

>> % wave-let transform of depth J.

>> % Consider the structure of the matrix, and note that each incremental

>> % 2^j rows of the matrix have a special form.

>>

>> q1=[1,-1]/sqrt(2); ;

>> H=zeros(2^J); %

>> S=0; % counter to keep track of the number of rows have been produced yet

>>

>> for j=J-1:-1:0 %

>> A=ones(1,2^(J-1-j))/sqrt(2^(J-1-j));

>> B=kron(q1,A); % produces the fundamental block of each sub-matrix

>> H(S+1:S+2^j,:)=kron(eye(2^j),B);

>> S=S+2^j; % to jump to the right row

>> end

>> H(2^J,:)=ones(1,2^J)/sqrt(2^J); % assignement of the last row of H

Problem 2

(a) Each leaf of the filterbank tree corresponds to a frequency subband, so there are J +1 = 7
different subbands. The entries of c̃ that belong to each frequency subband are given in
the following table:

entries 1-32 highest frequency band
entries 33-48 second-highest frequency band
entries 49-56 third-highest frequency band
entries 57-60 fourth-highest frequency band
entries 61-62 third-lowest

entry 63 second-lowest frequency band
entry 64 lowest frequency band

The above values are obtained as follows: if we number the frequency bands by 1, 2, . . . , J+
1, starting with the high-frequency ones, then frequency subband 1 contains the first 2J−1

6

entries, subband 2 contains the next 2J−2 entries and so on. In general, subband j contains
the 2J−j entries following the entries of the previous subband. The exception is the last
subband which only contains one entry.

(b) In Matlab, we type:

>> M = WT(10);

>> [conga,fs]=wavread(’conga.wav’);

>> c = conga(300001:301024);

>> plot_wt(M*c);

The result of the plot is given in Figure 5. We can see that there are regions similar to the
ones given in Figure 6. These time-frequency plots show the meaning of each coefficient.
Each region of the plot shows the magnitude of a coefficient of the filterbank transform.
Also, each row of the plot corresponds to one frequency subband. Hence, we see that every
coefficient in the top row contains the information about only two values of k in c[k], but it
contains information about roughly the upper half of the frequencies. (“Roughly” because
we use the Haar filters. If we used a perfect low- and highpass filterbank, it would be
exactly the upper half of the frequencies.) On the second row, every coefficient contains
information about 4 samples of c, but it covers only about half as many frequencies. As we
go through the rows of the plot (from top to bottom), the number of frequencies that each
coefficient covers decreases while the number of samples of c it covers increases. Finally,
on the last row, there is only one coefficient, which tells us how much energy is contained
in the very low frequencies, but summarized over the whole time-sequence.

Time

F
re

qu
en

cy

Figure 5: Output of the function “plot wt”.

(c) If we apply M to every block of length 2J , we obtain again a collection of blocks of length
2J . No information has been lost (perfect reconstruction), and therefore, if we stored the
outcome on the harddisk, exactly the same space would be required. We have not done

7

Figure 6: Hybrid transform with coarse frequency resolution in the upper half of the frequency range
and finer frequency resolution for the lower half of the frequency range. Consequently, the time
resolution is higher for higher frequency ranges and lower for lower frequency ranges.

any compression yet. One might ask what the filterbank is good for if it does not do any
compression. The answer is that it splits the time-sequence c into several sets of coefficients
(the different subbands) and we know what frequency range of the reconstruction will be
affected by changing which coefficient.

(d) This is where the actual compression starts. It should now be clear that (for J = 10), we
should use the fewest bits for the first subband (containing 2J−1 = 512 entries), and the
most bits for the last two subbands (containing only 2J−J) = 20 = 1 entry each).

(e) The two Matlab functions “encode block” and “decode block” are given below:

8

%%

% This function encodes the block c into the file given by the e %

% file-pointer fid. It uses the function store to store the binary %

% representations of the subblocks. %

% You are required to complete this function. %

%%

% Arguments: %

% c: the block to be encoded and stored %

% J: the number of levels of the filterbank %

% M: the projection matrix corresponding to the filterbank %

% qbits: a vector that specifies the number of bits to be used for %

% the different subbands (the last 6 subbands are treated as one) %

% fid: the filepointer used to store the data %

%%

function encode_block(c,J,M,qbits,fid)

% apply the projection matrix to the block:

ctrans = M*c; %delete

% find normalization factor for this block:

nf = ceil(max(abs(ctrans)));

% normalize the block:

ctrans_norm = ctrans / nf;

% the entries of ctrans_norm are all in [-1,1]

% store the normalization factor:

fwrite(fid,nf,’uint8’);

% apply all quantizers (except the last)

% and store the data directly to the file:

stop = 0;

for j = 1:J-6

% define the quantizer:

q = quantizer(’mode’, ’float’,’roundmode’,’round’,...

’overflowmode’, ’saturate’, ’format’, [qbits(j) qbits(j)-1]);

% set the boundaries of the subblock corresponding to subband j:

start = stop+1; %delete

stop = stop+2^(J-j); %delete

% apply the quantizer and store the binary representation:

store(num2bin(q,ctrans_norm(start:stop)),fid);

end

9

% do the same for the last subband:

q = quantizer(’mode’, ’float’,’roundmode’,’round’,...

’overflowmode’, ’saturate’, ’format’, [qbits(J-5) qbits(J-5)-1]);

start = stop+1; %delete

stop = length(ctrans_norm); %delete

store(num2bin(q,ctrans_norm(start:stop)),fid);

10

%%

% This function decodes the the next block from the file given by %

% the file-pointer fid. It uses the function retrieve to retrieve %

% the binary representations of the subblocks one by one. %

% You are required to complete this function. %

%%

% Arguments: %

% J: the number of levels of the filterbank %

% M: the projection matrix corresponding to the filterbank %

% qbits: a vector that specifies the number of bits to be used for %

% the different subbands (the last 6 subbands are treated as one) %

% fid: the filepointer used to store the data %

% Return Values:

% b: the decoded block to be encoded and stored %

%%

function b = decode_block(J,M,qbits,fid)

%function [b,bit] = decode_block(J,M,qbits,fid,key) %used for Pb3

% read the normalization factor from the file:

count = 0;

[nf,count] = fread(fid,1,’uint8’);

if count ~= 1

b = 0;

return;

end

% allocate space for the sequence:

btrans_norm = zeros(2^J,1);

% read the first J-5 quantized subblocks, convert them

% to numerical values and add them to btrans_norm:

stop = 0;

for j=1:J-6

% define the quantizer:

q = quantizer(’mode’, ’float’,’roundmode’,’round’,...

’overflowmode’, ’saturate’, ’format’, [qbits(j) qbits(j)-1]);

% retrieve the quantized, binary version of bhe subblock:

[bsubquant,error] = retrieve(fid);

if error == 1

b = 0;

return;

end

% determine where to place this subblock in btrans_norm:

start = stop+1; %delete

stop = stop+2^(J-j); %delete

11

% convert the binary subblock to numerical values:

btrans_norm(start:stop) = bin2num(q,bsubquant);

end

% do the same for the last subblock:

q = quantizer(’mode’, ’float’,’roundmode’,’round’,...

’overflowmode’, ’saturate’, ’format’, [qbits(J-5) qbits(J-5)-1]);

[bsubquant,error] = retrieve(fid);

if error == 1

b = 0;

return;

end

start = stop+1; % delete

stop = length(btrans_norm); %delete

btrans_norm(start:stop) = bin2num(q,bsubquant);

% undo the normalization:

btrans = btrans_norm*nf; %delete

% note: because of the quantization, some values

% might now be larger than 1.

% This problem is taken care of in the function

% decode_file.m.

% undo the wavelet-projection:

b = M’ * btrans; %delete

12

(f) If written correctly, the encoder should work a few minutes, and then write a file “conga.ema”.
This compressed file is roughly 3 to 4 times smaller than the original file “conga.wav”.

(g) If written correctly, the decoder should work a few minutes, also, and then write a file
“reconstruction.wav”. If we listen to the reconstructed audio file, we hear a clear differ-
ence. The overall sound-quality has decreased. Have you tried playing with the program
parameters (“J” and “qbits”) to improve the quality?

Problem 3

(a) Decode the file by typing

>>decode_file(’conga_tagged.ema’,’reconstruction_tagged.wav’);

and then listen to the wave-file “reconstruction tagged.wav”. To hide the watermark, we
have used bits in the EMA file which are not very important (the least significant bit of
a 7-bit number). Hence, the difference is not audible.

(b) The new version of the file “decode block” is given below. Apart from the function
definition, the only line that has been added is

bit=bsubquant(key,7);

Oterwise, no modifications have been made.

13

%%

% This function checks the the next block from the file given by %

% the file-pointer fid. It uses the function retrieve to retrieve %

% the binary representations of the subblocks one by one. %

% You are required to complete this function. %

%%

% Arguments: %

% J: the number of levels of the filterbank %

% M: the projection matrix corresponding to the filterbank %

% qbits: a vector that specifies the number of bits to be used for %

% the different subbands (the last 6 subbands are treated as one) %

% fid: the filepointer used to store the data %

% Return Values:

% b: the decoded block to be encoded and stored %

%%

%function b = decode_block(J,M,qbits,fid)

function [b,bit] = decode_block(J,M,qbits,fid,key) %used for Pb3

% read the normalization factor from the file:

count = 0;

[nf,count] = fread(fid,1,’uint8’);

if count ~= 1

b = 0;

return;

end

% allocate space for the sequence:

btrans_norm = zeros(2^J,1);

% read the first J-5 quantized subblocks, convert them

% to numerical values and add them to btrans_norm:

stop = 0;

for j=1:J-6

% define the quantizer:

q = quantizer(’mode’, ’float’,’roundmode’,’round’,...

’overflowmode’, ’saturate’, ’format’, [qbits(j) qbits(j)-1]);

% retrieve the quantized, binary version of bhe subblock:

[bsubquant,error] = retrieve(fid);

if error == 1

b = 0;

return;

end

% determine where to place this subblock in btrans_norm:

start = stop+1; %delete

stop = stop+2^(J-j); %delete

14

% convert the binary subblock to numerical values:

btrans_norm(start:stop) = bin2num(q,bsubquant);

end

% do the same for the last subblock:

q = quantizer(’mode’, ’float’,’roundmode’,’round’,...

’overflowmode’, ’saturate’, ’format’, [qbits(J-5) qbits(J-5)-1]);

[bsubquant,error] = retrieve(fid);

if error == 1

b = 0;

return;

end

start = stop+1; % delete

stop = length(btrans_norm); %delete

btrans_norm(start:stop) = bin2num(q,bsubquant);

%checking:

bit=bsubquant(key,7);

% undo the normalization:

btrans = btrans_norm*nf; %delete

% undo the wavelet-projection:

b = M’ * btrans; %delete

15

(c) When decoding the file “conga tagged.ema” using the function “check file” (and having
“key” set to 1, we find the message “Copyright reserved by EPFL 2007”.

(d) An easy way to check your personal EMA file with many different keys is the following:
We define the variable “key” to be global in “check file.m”:

%key = 1;

global key;

Then, in your Matlab command line, you can type:

>> global key

>> for key=1:64

check_file(’Diggavi_xmas.ema’,’output.wav’);

key

end

Then, you just lean back and observe the command line. Every 20 seconds or so, a new
key will be tried. Several times, the output of the program will be a meaningless string of
symbols. Finally, when the correct key has been tried, you will see a meaningful message
(about Christmas, New Year or some other kind of Congratulations), and you can also
determine which key has led to that message.

16

