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Prof. Suhas Diggavi Handout # 33, Friday, December 21, 2007

Solutions: Homework Set # 7

Problem 1

(a) We have

Xc(jΩ) =

∫

∞

−∞

x(t)ejΩtdt

=

{

1 Ω ∈ [−π, π]
0 otherwise.

(b) Let Ωs = 2πfs = π. Hence, X̃c(jΩ) is a sum of copies of Xc(jΩ), each shifted by a multiple
of π. It is easy to see that this sum gives a constant, i.e., for any Ω, X̃c(jΩ) = 2. (It
would be 1 if the Ωs was 2π.)

(c) We can use the formula from the lecture notes:

X(ejω) =
1

Ts

X̃c(j
ω

Ts

)

=
1

Ts

2

=
1

2
2 = 1.

(d) Note: Here, we use a sinc-interpolation procedure that corresponds to the sampling
frequency fs. Hence, in the formula of the lecture notes (Section 10.6.3), we set ΩN = 1

2Ωs.
We find the following formula useful:

X̂(jΩ) =

{

π
ΩN

X(e
jπ Ω

ΩN ) for |Ω| ≤ ΩN

0 otherwise

=

{

2π
Ωs

X(ejπ 2Ω

Ωs ) for |Ω| ≤ Ωs

2

0 otherwise

=

{

2π

2π 1

2

1 for |Ω| ≤
2π 1

2

2

0 otherwise

=

{

2 for |Ω| ≤ π
2

0 otherwise.
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(e) Note that X̂(jΩ) = 2X(j2Ω). Thus, we can compute

x̂(t) =
1

2π

∫

∞

−∞

X(jΩ)ejΩtdΩ

=
1

2π

∫

∞

−∞

2X(j2Ω)ejΩtdΩ

=
1

2π

∫

∞

−∞

2X(jθ)ej θ

2
t 1

2
dθ

=
1

2π

∫

∞

−∞

X(jθ)ej t

2
θdθ

= x(
t

2
),

where we have used the variable change θ = 2Ω. Therefore, we have

x̂(t) = sinc(
t

2
).

This is different from x(t). The difference is clearly due to the aliasing that happens when
we sample at a frequency which is too small to allow for perfect reconstruction.

Problem 2

(a) It is clear that X(jΩ) = 0 for Ω > 8π, and Ω < −12π. So, ΩN = max{|8π|, |−12π|} = 12π.

(b) After sampling, the magnitude of the spectrum is scaled by 1
Ts

= 12, and it will be repeated

by period 2π
Ts

= 24π. Therefore, the X(jΩ) would be as shown in Fig. 1.

Ω

Xs(jΩ)

12

−4π−12π−36π −24π −16π 8π 12π 24π 32π

Figure 1: Spectrum of the sampled signal with Ts = 1
12 : Xs(jΩ)

(c) The spectrum of the DTFT of a signal is quit similar to its sampled version, unless the
horizontal axis which should be scaled by T = 1

12 . It is shown in Fig. 2.

(d) Since we sample the signal with Ωs = 2Ω, we are in the critical point of the Nyquist
theorem. For this example since the X(jΩ) |Ω=12= 0, we do not have any aliasing effect,
and therefore we can exactly reconstruct the signal. You can check that using an ideal
reconstruction filter,

Hr(jΩ) =

{

1 |Ω| ≤ Ωc

0 |Ω| > Ωc,

the signal can be reconstructed from its sampled version. Notice that the only possible
value for the cut-off frequency of the filter ωc = 12Hz, in this example.
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ω = ΩT

X(ejω)

12

−π
3−π−3π −2π 2π

3
−4π

3 π 2π 8π
3

Figure 2: Spectrum of DTFT of the signal, X(ejω)

10 Ω

Xs(jΩ)

8

4π 8π 16π 18π−4π−8π−16π

Figure 3: Spectrum of the sampled signal with Ts = 1
8 : Xs(jΩ)

(e) By sampling with sampling time Ts = 1
8 , we get the spectrum shown in Fig. 3. As it is

clear form Fig. 3, we have aliasing effect here, and exact reconstruction is impossible.

(f) Using the properties of continuous time Fourier transform, we have

Y (jΩ) = X(j(Ω − 2))

which is in fact the shifted version of X(jΩ). Fig. 4 shows its spectrum.

Ω

Y (jΩ)

1

10π−2π−10π

Figure 4: Y (jω)

(g) Fig. 5 shows the spectrum of the sampled signal, with Ts = 1
10 .

(h) It is clear from the figure that the one-sided bandwidth of Y (jΩ) is 10π, and since we
sample it at Ωs = 20π, we do not have aliasing effect here. The correct way to reconstruct
X(jΩ) (and therefore xc(t)) from Ys(jΩ) is to first filter it by

H ′

r(jΩ) =

{

1 |Ω| ≤ 10π
0 |Ω| > 10π,
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Ω

Ys(jΩ)

10

10π−2π−10π−20π−30π 20π 30π

Figure 5: Ys(jω)

and shift it back to the right frequency band. That is

X(jΩ) = [Ys(jΩ)H ′

r(jΩ)] ∗ δ(Ω + 2) = Ys(j(Ω + 2))H ′

r(j(Ω + 2)),

xc(t) = (ys(t) ∗ h′

r(t))e
−j2πt.

(i) We saw in part (a) that ΩN = 12π, and therefore, according to Sampling (Nyquist)
theorem, we if sample the signal at sampling frequency Ωs > 2ΩN , then we can exactly
reconstruct it. This is only a sufficient condition. However, the theorem does not say
anything about the necessary condition, and there is no contradiction between the result
of part (h) and the theorem.
Remark: You can think of the bandwith as the half of the total length of the frequency
interval occupied by the spectrum (for which the spectrum is not zero). By this modified
definition, we are also able to do the exact reconstruction. However, this reconstruction
might be not that trivial as the original sampling theorem, and it has to be done carefully,
e.g. the shift pre-filter we used in definition of Y (jΩ), part (e) of Problem 3, etc.

Problem 3

(a) The condition of the sampling theorem is

Ωs ≥ 2ΩN .

In our case, ΩN = Ω2 = 2πf2. Hence, the condition is

2π
1

Ts

≥ 22πf2

Ts ≤
1

2f2
.

(b) It is easy to check that

T ′

s =
1

f ′
s

=
1

100
[s] >

1

2fs

=
1

400
[s].

Hence, f ′
s does not satisfy the condition given in part (a).

(c) By the “spectrum” of v[n], we mean the DTFT. To obtain the DTFT of the sampled
version of xc(t), we first sketch

Xs(jΩ) =
1

T ′
s

∞
∑

k=−∞

Xc

(

j(Ω − kΩ′

s)
)

,
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which is asked for in the next part of this problem. Xs(jΩ) is just a sum of shifted and
scaled copies of Xc(jΩ) (shifted by multiples of Ω′

s = 2π · 100, scaled by 1
T ′

s

). It is given

in Figure 6. The DTFT of v[n] is now simply

V (ejω) = Xs(j
ω

T ′
s

),

which basically means that the point Ω = Ω′

s

2 = 2π
2T ′

s

will correspond to ω = π. The result
is shown in Figure 7.

Ω

Xs(jΩ)

Ω′
s Ω1 Ω2−Ω′

s−Ω1−Ω2

1
T ′

s

Figure 6: CTFT of xs(t).

ω

V (ejω)

π−π 2π−2π

1
Ts

Figure 7: DTFT of v[n].

(d) This has already been answered in part (c).

(e) First, it is important to know that the condition Ωs ≥ 2ΩN is a sufficient condition for
recovering xc(t) from x[n]. However, it is not a necessary condition. Indeed, this example
shows that there are cases in which reconstruction of xc(t) is possible although Ωs > 2ΩN .

The key observation is that even if the maximal frequency of Xc(jΩ) is equal to ΩN = Ω2,
the actual bandwidth occupied by the signal xc(t) is smaller, because it is a band-limited
signal. The actual bandwidth that it occupies is 2(Ω2 −Ω1). In addition, we observe that
the sampling frequency f ′

s is chosen such that when shifting Xc(jΩ) by multiples of Ω′
s,

non-zero values of the shifts never overlap.

If we look at Figure 8, we realize that by applying a passband filter to Xs(jΩ) (and some
scaling), we can recover Xc(jΩ). More precisely, we see that

Xc(jΩ) = H(jΩ)Xs(jΩ),
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where

H(jΩ) =

{

T ′
s for |Ω| ∈ [Ω1,Ω2]

0 otherwise.

= T ′

srect

(

Ω − Ω1+Ω2

2

Ω2 − Ω1

)

+ T ′

srect

(

Ω + Ω1+Ω2

2

Ω2 − Ω1

)

=
π

Ω2 − Ω1
rect

(

Ω − Ω1+Ω2

2

Ω2 − Ω1

)

+
π

Ω2 − Ω1
rect

(

Ω + Ω1+Ω2

2

Ω2 − Ω1

)

,

where we have used the fact that Ω′
s = 100 · 2π = 2(Ω2 −Ω1). From the lecture notes, we

know that the inverse Fourier transform of the rectangular function is

2π

A
rect

(

Ω

A

)

F
−1

⇒ sinc

(

At

2π

)

.

Using this fact and the shift property of the CTFT, we obtain

h(t) =
1

2
sinc

(

(Ω2 − Ω1)t

2π

)

(

ej
Ω1+Ω2

2
t + e−j

Ω1+Ω2
2

t
)

=
1

2
sinc

(

t

2T ′
s

)

(

ej
Ω1+Ω2

2
t + e−j

Ω1+Ω2
2

t
)

.

Finally, because multiplication in frequency is convolution in time, we can recover xc(t)
as

xc(t) = h(t) ∗ xs(t),

where we use the continuous-time convolution.

Ω

Xs(jΩ)

Ω′
s

Ω1 Ω2−Ω′
s

−Ω1−Ω2

1
T ′

s

T ′
s

Figure 8: CTFT of xs(t).

Problem 4

(a) The code for the functions Izero and Ifirst is given on Figures 9a and 9b. Figure 10
shows the corresponding plot.

(b) See Figure 10.
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function f = Izero(t)

f = zeros(size(t));

f(abs(t) <= .5) = 1;

end

(a) Izero.m: Implements zero-order interpolation.

function f = Ifirst(t)

f = zeros(size(t));

f(abs(t) < 1) = 1 - abs(t(abs(t) < 1));

end

(b) Ifirst.m: Implements first-order interpolation.

Figure 9: Code for Problem 4(a).
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Figure 10: Interpolation plot for Problem 4(a).
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function l = lagrange(t, n, N, Ts)

l = ones(size(t));

for k = -N:N

if k ~= n

l = l .* (t/Ts - k) ./ (n - k);

end

end

Figure 11: lagrange.m: Implementation of Lagrange interpolation.
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(a) Lagrange interpolation for sinusoidal signal.
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(b) For large N , the Lagrange polynomial approxi-
mates the sinc function.

Figure 12: Lagrange interpolation.
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(c) The code for the Lagrange interpolation is shown in Figure 11.

(d) The plot of the Lagrange interpolation is shown on Figure 12a.

(e) The plot of sinc(t/Ts) and L
(N)
0 is shown in Figure 12b.
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