
Signal Processing for Communications EPFL Winter Semester 2007/2008
Prof. Suhas Diggavi Handout # 29, Thursday, November 29, 2007

Solutions: Homework Set # 6

Problem 1

(a) Using the inverse DTFT formula, we can compute the impulse response as

h[n] =
1

2π

∫ π

−π

H(ejωejωndω =
1

2π

∫ π

3

−π

3

ejωndω

=
1

2πjn
ejωn

∣

∣

∣

∣

π

3

−π

3

=
sin(π

3 n)

πn
=

1

3
sinc

(n

3

)

.

(b) We want to minimize ‖H(ejω) − HK(ejω)‖2. Using the Parseval’s Theorem, we have

‖H(ejω) − HK(ejω)‖2
2 =

1

2π

∫ π

−π

|H(ejω) − HK(ejω)|2 =
∑

n

|h[n] − hK [n]|2

=
∑

n:|n|≤K

|h[n] − hK [n]|2 +
∑

n:|n|>K

|h[n] − hK [n]|2

=
∑

n:|n|≤K

|h[n] − hK [n]|2 +
∑

n:|n|>K

|h[n]|2.

Note that the second term does not depend on the choice of hK [n], and in order to minimize
the first term, we have to choose hK [n] = h[n] (to make all terms in the summation equal
zero). Thus

hK [n] =

{

h[n] |n| ≤ K
0 else.

=

{

1
3 sinc(πn

3) |n| ≤ K
0 else.

=

(c) Here is a MATLAB file which produces the vector h[n] and computes the corresponding
Fourier transform.

function [h,H]=sinc_approx(K)

n=-K:K;

h=sinc(n/3)/3;

w=-pi:0.01:pi;

H=0;

for k=-K:K

H=H+h(k+K+1)*exp(-j*k*w);

end

plot(w,abs(H));

Note that one can write only the first part of the file, and then use fft to compute the
Fourier transform. However, fft considers the vector h[n] as a vector on n = 1, 2, . . . , 2K+
1. You need to compensate this shifting by a complex exponential multiplication in
frequency domain.

1

(d) Fig. 1 shows the frequency response of the filter for different length. It can be seen that the
larger length FIR filter gives better approximation of H(ejω). We can see a jump(ripple)
at the cut-off frequencies (ω = ±π

3), which corresponds to the Gibbs phenomenon. You
can think of it as approximating a discontinuity with linear combination of continuous
functions, which is impossible for any finite K.

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

ω

|H
K
(e

jω
)|

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

ω

|H
K
(e

jω
)|

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

ω

|H
K
(e

jω
)|

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

ω

|H
K
(e

jω
)|

K=10

K=50

K=100

K=1000

Figure 1: Approximation of ideal low-pass filter with FIR filters of length 2K + 1. .

2

Problem 2 (Weighted Least-Squares Filter Design)

(a) W is a diagonal matrix, with entry (W)kk = δp/δs if ωk ∈ [0, ωs], (W)kk = 1 if ωk ∈ [ωp, π],
and (W)kk = 0 otherwise.

U =

1 cos ω1 . . . cos(M−1
2 ω1)

1 cos ω2 . . . cos(M−1
2 ω2)

. . .

1 . . . cos(M−1
2 ωk)

.

dk =

0 if ωk ∈ [0, ωs]

1 if ωl ∈ [ωp, π]

any otherwise

(b) We can write the condition as

e ≤ δp1

−e ≤ δp1,

where 1 = [1 . . . 1]T. From e = W (d− Uh), we get

−WUh ≤ δp1− Wd

WUh ≤ −(δp1− Wd),

and so we find

A =

[

−WU
WU

]

and b =

[

δp1− Wd

−(δp1− Wd)

]

.

(c)

Problem 3

(a) You should hear a snippet of the song “All You Need is Love” by the Beatles. For the
plot of the DFT of “song”, type

>> plot(abs(fft(song)));

The result is given in Figure 2. If we assume that the DTFT is defined in the interval
[−π, π], then the right half of the plot corresponds actually to negative frequencies. The
labels of the points 0, π and −π in Figure 2 indicate this fact. For a more convenient
representation, one can use the function fftshift, which converts the DFT of a discrete
sequence into a form which is suitable for plotting:

>> plot(abs(fftshift(fft(song))));

or, if you want to label the ω-axis correctly:

>> plot(linspace(-pi,pi,length(song)),abs(fftshift(fft(song))));

>> xlabel(’\omega’);

>> ylabel(’|X(e^{j \omega})|’);

3

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

1000

2000

3000

4000

5000

6000

0
π,−π

0

hidden message

Figure 2: DFT of the sequence “song”.

The result is shown in Figure 3.

(b) Yes, one can see it in the frequency-plot. The secret message is indicated in Figure 2. It
appears that the energy of the hidden message is contained in the high-frequency range
of the music sequence. Hence, a high-pass filter would extract the message, and cut away
most of the energy of the song.

(c) By looking at Figure 3, we see that the band-edges ωs = 0.6π and ωp = 0.75π are fine
for our purpose. Hence, we can use the filter provided by the file “wls.m” as-is. If your
version of “wls.m” does not seem to work, you can generate a filter using the matlab
function firpm (Parks-McClellan FIR filter):

>> [hpm, err]=firpm(40,[0 0.6 0.75 1],[0 0 1 1],[10,1]);

(d) Note that in Matlab, we can directly do the convolution of two sequences, even if they are
of different length. The function conv will automatically zero-pad the shorter sequence
before taking the convolution. We type

>> songFilt = conv(h,song);

>> plot(linspace(-pi,pi,length(songFilt)),abs(fftshift(fft(songFilt))));

>> xlabel(’\omega’);

>> ylabel(’|X(e^{j \omega})|’);

and obtain the plot in Figure 4. We can verify that the filter really cut off most of the
low frequencies.

4

−4 −3 −2 −1 0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

ω

|X
(e

j ω
)|

Figure 3: Nicer plot of the DFT of the sequence “song”.

(e) If we write the cosine as cos(0.8πn) = 1
2(ej0.8πn + e−j0.8πn), we see that the shifted signal

is

m′[n] =
1

2
m[n]ej0.8πn +

1

2
m[n]e−j0.8πn.

By the shift property of the DTFT, we see that if m′[n] was an infinite sequence, then the
corresponding DTFT would be

M ′(ejω) =
1

2
M(ej(ω−0.8π)) +

1

2
M(ej(ω+0.8π)).

Here, we are actually dealing with the DFT. By the shift property of the DFT, and because
0.8π = 2π

N
0.8N

2 , we see that

M ′[k] =
1

2
M [(k − 0.4N) mod N] +

1

2
M [(k + 0.4N) mod N].

This results in circularly shifting the two “halfs” of the spectrum of m[n] by 0.4N = 156240
samples in opposite directions.

(f) If we want to find the strict inverse of m′[n], we would have

m[n] =
m′[n]

cos(0.8πn)
.

A simpler inverse transformation is

m̂[n] = m′[n] cos(0.8πn),

5

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

ω

|X
(e

j ω
)|

Figure 4: DFT of the sequence “songFilt”.

i.e., we reapply the same cosine-shift. Note that m̂[n] is not exactly equal to m[n], but
in the low frequencies, m̂[n] and m[n] are very similar. Figure 5 shows the spectrum of
the original message m[n]. Figure 6 shows the spectrum of m′[n]. Finally, Figure 7 shows
the spectrum of the reconstruction m̂[n]. One can see that for ω ∈ [−π

3 , π
3], the spectra in

Figures 5 and 7 are quite similar.

Now, we use this operation on the sequence “songFilt”:

>> n=1:length(songFilt);

>> songFiltShift = songFilt’.*cos(0.8*pi*n);

>> plot(linspace(-pi,pi,length(songFiltShift)),abs(fftshift(fft(songFiltShift))));

>> xlabel(’\omega’);

>> ylabel(’|X(e^{j \omega})|’);

The result is shown Figure 8. The result looks more or less like a sound spectrum, except
for the high peaks at about |ω| = 1.3. These peaks are there, because we used the cosine
to shift the voice signal. (Compare with Figure 7.)

(g) You should be able to hear the message. It should say something about helicopters,
grandmothers, birds etc...

(h) As mentioned before, the high-frequency noise peaks in Figure 8 are there because we
used the cosine to shift the message to lower frequencies. In addition, there are some
remainders of the music (very high frequencies like snare-drums), that have also been
shifted down to low frequencies and can be heard as noise. We would use a low-pass filter
to get rid of the noise.

6

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

200

ω

|X
(e

j ω
)|

Figure 5: DFT of m[n].

(i) In Figure 8, we see that the frequencies that interest us are more or less ω ∈ [−1, 1]. This
corresponds more or less to |ω| ≤ 0.3π. Hence, we would use firpm to design a low-pass
filter that has a transition at more or less 0

.
3π:

>> [hpm, err]=firpm(40,[0 0.25 0.3 1],[1 1 0 0],[1,10]);

>> message = conv(songFiltShift,hpm);

>> plot(linspace(-pi,pi,length(message)),abs(fftshift(fft(message))));

>> xlabel(’\omega’);

>> ylabel(’|X(e^{j \omega})|’);

The corresponding plot is shown in Figure 9. We see that the high-frequency noise has
disappeared. If we play the message, it can be understood more easily.

7

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

ω

|X
(e

j ω
)|

Figure 6: DFT of m′[n].

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

ω

|X
(e

j ω
)|

Figure 7: DFT of m̂[n].

8

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

ω

|X
(e

j ω
)|

Figure 8: DFT of the sequence “songFiltShift”.

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

ω

|X
(e

j ω
)|

Figure 9: DFT of the sequence “message”.

9

