Solutions: Homework Set \# 4

Problem 1

(a) Let $a[n]=x[-n]$

$$
\begin{aligned}
A\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[-n] e^{-j \omega n} \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j(-\omega) n} \\
& =X\left(e^{-j \omega}\right)
\end{aligned}
$$

(b) As $x[n]$ is real $x^{*}[n]=x[n]$:

$$
\begin{aligned}
X^{*}\left(e^{-j \omega}\right) & =\left(\sum_{n=-\infty}^{\infty} x[n] e^{j \omega n}\right)^{*} \\
& =\sum_{n=-\infty}^{\infty} x^{*}[n]\left(e^{j \omega n}\right)^{*} \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& =X\left(e^{j \omega}\right)
\end{aligned}
$$

(c) If a complex number $z=x+j y$ is such that $z=z^{*}$ then z is real:

$$
\begin{aligned}
z & =x+j y \\
& =z^{*} \\
& =x-j y \\
& \Longrightarrow x+j y=x-j y \\
& \Longrightarrow y=0
\end{aligned}
$$

We use the properties that $x[n]=x[-n]$ and that $x[n]$ is real and we show that $X^{*}\left(e^{j \omega}\right)$

$$
=X\left(e^{j \omega}\right)
$$

$$
\begin{aligned}
X^{*}\left(e^{j \omega}\right) & =\left(\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}\right)^{*} \\
& =\sum_{n=-\infty}^{\infty} x^{*}[n]\left(e^{-j \omega n}\right)^{*} \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{j \omega n} \\
& =\sum_{n=-\infty}^{\infty} x[-n] e^{j \omega n} \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& =X\left(e^{j \omega}\right)
\end{aligned}
$$

(d) If a complex number $z=x+j y$ is such that $-z=z^{*}$ then z is imaginary:

$$
\begin{aligned}
-z & =-x-j y \\
& =z^{*} \\
& =x-j y \\
& \Longrightarrow-x-j y=x-j y \\
& \Longrightarrow x=0
\end{aligned}
$$

We use the properties that $x[n]=-x[-n]$ and that $x[n]$ is real and we show that $X^{*}\left(e^{j \omega}\right)$ $=-X\left(e^{j \omega}\right)$:

$$
\begin{aligned}
X^{*}\left(e^{j \omega}\right) & =\left(\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}\right)^{*} \\
& =\sum_{n=-\infty}^{\infty} x^{*}[n]\left(e^{-j \omega n}\right)^{*} \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{j \omega n} \\
& =-\sum_{n=-\infty}^{\infty} x[-n] e^{j \omega n} \\
& =-\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& =-X\left(e^{j \omega}\right)
\end{aligned}
$$

Problem 2

(a) We recall from homework 1 that $\sum_{n=0}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}}$. Now,

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& =\sum_{n=-\infty}^{\infty} n 2^{-n} u[n] e^{-j \omega n} \\
& =\sum_{n=0}^{\infty} n 2^{-n} e^{-j \omega n} \\
& =\sum_{n=0}^{\infty} n\left(\frac{e^{-j \omega}}{2}\right)^{n} \\
& =\frac{\frac{e^{-j \omega}}{2}}{\left(1-\frac{e^{-j \omega}}{2}\right)^{2}} \\
& =\frac{e^{-j \omega}}{2\left(1-\frac{e^{-j \omega}}{2}\right)^{2}}
\end{aligned}
$$

(b) We first calculate the DTFT of $2^{-n} u[n]$:

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=0}^{\infty}\left(\frac{e^{-i \omega n}}{2}\right)^{n} \\
& =\frac{1}{1-\frac{e^{-j \omega}}{2}}
\end{aligned}
$$

Now,

$$
j \frac{\mathrm{~d}}{\mathrm{~d} \omega} \frac{1}{1-\frac{e^{-j \omega}}{2}}=\frac{e^{-j \omega}}{2\left(1-\frac{e^{-j \omega}}{2}\right)^{2}}
$$

We can see that answers parts a) and b) are the same.

Problem 3

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=0}^{N-1} x[n] e^{-j \omega n} \\
& =\sum_{n=0}^{N-1}\left(\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{j \pi k n}{N}}\right) e^{-j \omega n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X[k] \sum_{n=0}^{N-1} e^{j\left(\frac{2 \pi k}{N}-\omega\right) n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X[k] \frac{1-e^{-j \omega N}}{1-e^{j\left(\frac{2 \pi k}{N}-\omega\right)}} \\
& =\frac{1-e^{-j \omega n}}{N} \sum_{k=0}^{N-1} \frac{X[k]}{1-e^{j\left(\frac{2 \pi k}{N}-\omega\right)}}
\end{aligned}
$$

Problem 4

(a) False. Consider for example:

$$
y[n]=\frac{1}{n} x[n]
$$

(b) True:

$$
\begin{aligned}
y[n+N] & =H(x[n+N]) \quad \text { (time-invariance) } \\
& =H(x[n]) \quad \text { (periodicity of } x[n]) \\
& =y[n]
\end{aligned}
$$

(c) 1 .

$$
y[n]=g[n] x[n]
$$

Stability: Suppose $|x[n]|<A \forall n$.

$$
\begin{aligned}
|y[n]| & =|g[n]||x[n]| \\
& <A|g[n]|
\end{aligned}
$$

This is stable only if $g[n]$ is bounded.
Causality: Yes, indeed, $y[n]$ depends only on the current input.
Linearity:

$$
\begin{aligned}
g[n]\left(a x_{1}[n]+b x_{2}[n]\right) & =a g[n] x_{1}[n]+b g[n] x_{2}[n] \\
& =a y_{1}[n]+b y_{2}[n] \\
& \Longrightarrow \text { linear }
\end{aligned}
$$

Time-invariance: for a general $g[n]$ the system is not time-invariant

$$
\begin{aligned}
g[n] x\left[n-n_{0}\right] & \neq g\left[n-n_{0}\right] x\left[n-n_{0}\right] \\
& =y\left[n-n_{0}\right]
\end{aligned}
$$

2.

$$
y[n]=\sum_{k=n_{0}}^{n} x[k]
$$

Stability: Suppose $|x[k]|=c$ a constant.

$$
\begin{aligned}
|y[n]| & =\left|\sum_{k=n_{0}}^{n} x[k]\right| \\
& \leq \sum_{k=n_{0}}^{n}|x[k]| \\
& =c\left(n-n_{0}+1\right)
\end{aligned}
$$

We can see that there does not exist B such that $\left(n-n_{0}+1\right) c<B \forall n$, therefore the system is not stable.
Causality: Yes, indeed, $y[n]$ does not depend on the future.
Linearity:

$$
\begin{aligned}
\sum_{k=n_{0}}^{n}\left(a x_{1}[n]+b x_{2}[n]\right) & =a \sum_{k=n_{0}}^{n} x_{1}[n]+b \sum_{k=n_{0}}^{n} x_{2}[n] \\
& =a y_{1}[n]+b y_{2}[n] \\
& \Longrightarrow \text { linear }
\end{aligned}
$$

Time-invariance: The system is not time-invariant

$$
\begin{aligned}
\sum_{k=n_{0}}^{n} x\left[k-k_{0}\right] & =\sum_{k=n_{0}-k_{0}}^{n-k_{0}} x[k] \\
& \neq \sum_{k=n_{0}}^{n-k_{0}} x[k] \\
& =y\left[n-n_{0}\right]
\end{aligned}
$$

3.

$$
y[n]=\sum_{k=n-n_{0}}^{n+n_{0}} x[k]
$$

Stability: Suppose $|x[k]|<A \forall n$. Then,

$$
\begin{aligned}
|y[n]| & =\left|\sum_{k=n-n_{0}}^{n+n_{0}} x[k]\right| \\
& \leq \sum_{k=n-n_{0}}^{n+n_{0}}|x[k]| \\
& <\left(2 n_{0}+1\right) A \\
& \Longrightarrow \text { stable }
\end{aligned}
$$

Now let $h[n]=1$ for $-n_{0} \leq n \leq n_{0}$ and 0 otherwise.
One can verify that $y[n]=(h * x)[n]$.
It follows that $y[n]$ is not causal as there are value(s) of $n<0$ such that $h[n] \neq 0$.
It also follows that $y[n]$ is linear and time invariant.
4.

$$
y[n]=a x[n]+b
$$

Stability: Suppose $|x[k]|<A \forall n$. Then,

$$
\begin{aligned}
|y[n]| & =|a x[n]+b| \\
& \leq|a||x[n]|+|b| \\
& <|a| A+|b| \\
& \Longrightarrow \text { stable }
\end{aligned}
$$

Causality: Yes, indeed, $y[n]$ does not depend on the future.
Linearity: The system is not linear

$$
\begin{aligned}
a\left(\alpha x_{1}[n]+\beta x_{2}[n]\right)+b & =a \alpha x_{1}[n]+a \beta x_{2}[n]+b \\
& \neq \alpha\left(a x_{1}[n]+b\right)+\beta\left(a x_{2}[n]+b\right) \\
& =\alpha y_{1}[n]+\beta y_{2}[n]
\end{aligned}
$$

Time-invariance: The system time-invariant

$$
x\left[n-n_{0}\right]+b=y\left[n-n_{0}\right]
$$

Problem 5

Take any impulse response $h[n]$ of an LTI system. Then,

$$
\begin{aligned}
y[n] & =(h * x)[n] \\
& =\sum_{k=-\infty}^{\infty} h[k] a^{n-k} \\
& =\sum_{k=-\infty}^{\infty} h[k] a^{n} \frac{1}{a^{k}} \\
& =a^{n}\left(\sum_{k=-\infty}^{\infty} h[k] a^{-k}\right) \\
& =a^{n} K
\end{aligned}
$$

Where K is a constant which does not depend on n.
Therefore the eigenvalue is:

$$
\sum_{k=-\infty}^{\infty} h[k] a^{-k}
$$

Problem 6

(a) Observing the figure we deduce that: $h[n]=\left(h_{5} * h_{1}\right)[n]+\left(h_{2} * h_{1}\right)[n]-\left(h_{4} * h_{3} * h_{1}\right)[n]$.
(b) We first calculate $\left(h_{5} * h_{1}\right)[n]$:

$$
\begin{aligned}
\left(h_{5} * h_{1}\right)[n] & =\sum_{k=-\infty}^{\infty} h_{1}[k] h_{5}[n-k] \\
& =n u[n]-\frac{1}{2}(n-1) u[n-1]
\end{aligned}
$$

We then we calculate $\left(h_{2} * h_{1}\right)[n]:$

$$
\begin{aligned}
\left(h_{2} * h_{1}\right)[n] & =\sum_{k=-\infty}^{\infty} h_{1}[k] h_{2}[n-k] \\
& =2 n u[n-1]-(n-1) u[n-2]
\end{aligned}
$$

We lastly calculate $h_{4} * h_{3} * h_{1}[n]:$

$$
\begin{aligned}
\left(h_{4} * h_{3} * h_{1}\right)[n] & =h_{4} *\left(\sum_{k=-\infty}^{\infty} h_{1}[k] h_{3}[n-k]\right) \\
& \left.=h_{4} *(n-2) u[n-1]-\frac{1}{2}(n-3) u[n-2]\right) \\
& \left.=(n-3) u[n-2]-\frac{1}{2}(n-4) u[n-3]\right)
\end{aligned}
$$

We now sum up all the intermediate results to get:

$$
h[n]=n u[n]+\frac{1}{2}(3 n-1) u[n-1]-(2 n-4) u[n-2]+\frac{1}{2}(n-4) u[n-4]
$$

(c) We get:

$$
(h * x)[n]=2 h[n]+h[n-2]-3 h[n-3],
$$

where $h[n]$ is the result from part (b).

