
Signal Processing for Communications EPFL Winter Semester 2007/2008
Prof. Suhas Diggavi Handout # 14, Tuesday, November 6, 2007

Solutions: Homework Set # 4

Problem 1

(a) Let a[n] = x[−n]

A(ejω) =
∞∑

n=−∞
x[−n]e−jωn

=
∞∑

n=−∞
x[n]e−j(−ω)n

= X(e−jω)

(b) As x[n] is real x∗[n] = x[n]:

X∗(e−jω) =

( ∞∑
n=−∞

x[n]ejωn

)∗

=
∞∑

n=−∞
x∗[n]

(
ejωn

)∗
=

∞∑
n=−∞

x[n]e−jωn

= X(ejω)

(c) If a complex number z = x + jy is such that z = z∗ then z is real:

z = x+ jy

= z∗

= x− jy
=⇒ x+ jy = x− jy
=⇒ y = 0

We use the properties that x[n] = x[−n] and that x[n] is real and we show that X∗(ejω)
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= X(ejω):

X∗(ejω) =

( ∞∑
n=−∞

x[n]e−jωn

)∗

=
∞∑

n=−∞
x∗[n]

(
e−jωn

)∗
=

∞∑
n=−∞

x[n]ejωn

=
∞∑

n=−∞
x[−n]ejωn

=
∞∑

n=−∞
x[n]e−jωn

= X(ejω)

(d) If a complex number z = x + jy is such that −z = z∗ then z is imaginary:

−z = −x− jy
= z∗

= x− jy
=⇒ −x− jy = x− jy
=⇒ x = 0

We use the properties that x[n] = −x[−n] and that x[n] is real and we show that X∗(ejω)
= −X(ejω):

X∗(ejω) =

( ∞∑
n=−∞

x[n]e−jωn

)∗

=
∞∑

n=−∞
x∗[n]

(
e−jωn

)∗
=

∞∑
n=−∞

x[n]ejωn

= −
∞∑

n=−∞
x[−n]ejωn

= −
∞∑

n=−∞
x[n]e−jωn

= −X(ejω)
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Problem 2

(a) We recall from homework 1 that
∑∞

n=0 nr
n = r

(1−r)2
.Now,

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

=
∞∑

n=−∞
n2−nu[n]e−jωn

=
∞∑

n=0

n2−ne−jωn

=
∞∑

n=0

n

(
e−jω

2

)n

=
e−jω

2(
1− e−jω

2

)2

=
e−jω

2
(

1− e−jω

2

)2

(b) We first calculate the DTFT of 2−nu[n]:

X(ejω) =
∞∑

n=0

(
e−iωn

2

)n

=
1

1− e−jω

2

Now,

j
d

dω
1

1− e−jω

2

=
e−jω

2
(

1− e−jω

2

)2

We can see that answers parts a) and b) are the same.
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Problem 3

X(ejω) =
N−1∑
n=0

x[n]e−jωn

=
N−1∑
n=0

(
1
N

N−1∑
k=0

X[k]ej
2πkn
N

)
e−jωn

=
1
N

N−1∑
k=0

X[k]
N−1∑
n=0

ej(
2πk
N
−ω)n

=
1
N

N−1∑
k=0

X[k]
1− e−jωN

1− ej(
2πk
N
−ω)

=
1− e−jωn

N

N−1∑
k=0

X[k]

1− ej(
2πk
N
−ω)

Problem 4

(a) False. Consider for example:

y[n] =
1
n
x[n]

(b) True:

y[n+N ] = H(x[n+N ]) (time-invariance)
= H(x[n]) (periodicity of x[n])
= y[n]

(c) 1.

y[n] = g[n]x[n]

Stability: Suppose |x[n]| < A ∀n.

|y[n]| = |g[n]||x[n]|
< A|g[n]|

This is stable only if g[n] is bounded.
Causality: Yes, indeed, y[n] depends only on the current input.
Linearity:

g[n](ax1[n] + bx2[n]) = ag[n]x1[n] + bg[n]x2[n]
= ay1[n] + by2[n]

=⇒ linear
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Time-invariance: for a general g[n] the system is not time-invariant

g[n]x[n− n0] 6= g[n− n0]x[n− n0]
= y[n− n0]

2.

y[n] =
n∑

k=n0

x[k]

Stability: Suppose |x[k]| = c a constant.

|y[n]| = |
n∑

k=n0

x[k]|

≤
n∑

k=n0

|x[k]|

= c(n− n0 + 1)

We can see that there does not exist B such that (n − n0 + 1)c < B ∀n, therefore
the system is not stable.
Causality: Yes, indeed, y[n] does not depend on the future.
Linearity:

n∑
k=n0

(ax1[n] + bx2[n]) = a

n∑
k=n0

x1[n] + b

n∑
k=n0

x2[n]

= ay1[n] + by2[n]
=⇒ linear

Time-invariance: The system is not time-invariant

n∑
k=n0

x[k − k0] =
n−k0∑

k=n0−k0

x[k]

6=
n−k0∑
k=n0

x[k]

= y[n− n0]

3.

y[n] =
n+n0∑

k=n−n0

x[k]
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Stability: Suppose |x[k]| < A ∀n. Then,

|y[n]| =

∣∣∣∣∣∣
n+n0∑

k=n−n0

x[k]

∣∣∣∣∣∣
≤

n+n0∑
k=n−n0

|x[k]|

< (2n0 + 1)A
=⇒ stable

Now let h[n] = 1 for −n0 ≤ n ≤ n0 and 0 otherwise.
One can verify that y[n] = (h ∗ x)[n].
It follows that y[n] is not causal as there are value(s) of n < 0 such that h[n] 6= 0.
It also follows that y[n] is linear and time invariant.

4.

y[n] = ax[n] + b

Stability: Suppose |x[k]| < A ∀n. Then,

|y[n]| = |ax[n] + b|
≤ |a||x[n]|+ |b|
< |a|A+ |b|

=⇒ stable

Causality: Yes, indeed, y[n] does not depend on the future.
Linearity: The system is not linear

a(αx1[n] + βx2[n]) + b = aαx1[n] + aβx2[n] + b

6= α(ax1[n] + b) + β(ax2[n] + b)
= αy1[n] + βy2[n]

Time-invariance: The system time-invariant

x[n− n0] + b = y[n− n0]
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Problem 5

Take any impulse response h[n] of an LTI system. Then,

y[n] = (h ∗ x)[n]

=
∞∑

k=−∞
h[k]an−k

=
∞∑

k=−∞
h[k]an 1

ak

= an

( ∞∑
k=−∞

h[k]a−k

)
= anK

Where K is a constant which does not depend on n.
Therefore the eigenvalue is: ∑∞

k=−∞ h[k]a−k

Problem 6

(a) Observing the figure we deduce that: h[n] = (h5 ∗ h1)[n] + (h2 ∗ h1)[n]− (h4 ∗ h3 ∗ h1)[n].

(b) We first calculate (h5 ∗ h1)[n] :

(h5 ∗ h1)[n] =
∞∑

k=−∞
h1[k]h5[n− k]

= nu[n]− 1
2

(n− 1)u[n− 1]

We then we calculate (h2 ∗ h1)[n] :

(h2 ∗ h1)[n] =
∞∑

k=−∞
h1[k]h2[n− k]

= 2nu[n− 1]− (n− 1)u[n− 2]

We lastly calculate h4 ∗ h3 ∗ h1[n] :

(h4 ∗ h3 ∗ h1)[n] = h4 ∗ (
∞∑

k=−∞
h1[k]h3[n− k])

= h4 ∗ (n− 2)u[n− 1]− 1
2

(n− 3)u[n− 2])

= (n− 3)u[n− 2]− 1
2

(n− 4)u[n− 3])
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We now sum up all the intermediate results to get:

h[n] = nu[n] +
1
2

(3n− 1)u[n− 1]− (2n− 4)u[n− 2] +
1
2

(n− 4)u[n− 4]

(c) We get:

(h ∗ x)[n] = 2h[n] + h[n− 2]− 3h[n− 3],

where h[n] is the result from part (b).
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