## Solutions: Homework Set \# 3

## Problem 1 (DTFT)

(a) Compute the DTFT of $x[n]=u[n-2]-u[n-4]$.

$$
\begin{gathered}
x[n]=\delta[n-2]+\delta[n-3] \\
X\left(e^{j \omega}\right)=e^{-j 2 w}+e^{-j 3 w}
\end{gathered}
$$

(b) Compute the DTFT of $h[n]=\left(\frac{1}{2}\right)^{-n} u[-n-1]$.

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{-1}\left(\frac{1}{2}\right)^{-n} e^{j n \omega} \\
& =\frac{0.5 e^{-j \omega}}{1-0.5 e^{-j \omega}}
\end{aligned}
$$

(c) Compute the DTFT of $y[n]=x[n] * h[n]=\sum_{k} x[k] h[n-k]$.

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} y[n] e^{j n \omega} \\
& =\sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] h[n-k] e^{j n \omega} \\
& =\sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[k] h[n-k] e^{j(n-k+k) \omega} \\
& =\sum_{k=-\infty}^{\infty} x[k] e^{j k \omega} \sum_{n=-\infty}^{\infty} h[n-k] e^{j(n-k) \omega} \\
& =X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)
\end{aligned}
$$

(d) Compute the DTFT of $z[n]=y\left[n-n_{0}\right]$.

$$
\begin{aligned}
Z\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} z[n] e^{j n \omega} \\
& =\sum_{n=-\infty}^{\infty} y\left[n-n_{0}\right] e^{j n \omega} \\
& =\sum_{n=-\infty}^{\infty} y\left[n-n_{0}\right] e^{j\left(n-n_{0}+n_{0}\right) \omega} \\
& =e^{j n_{0} \omega} \sum_{n=-\infty}^{\infty} y\left[n-n_{0}\right] e^{j\left(n-n_{0}\right) \omega} \\
& =e^{j n_{0} \omega} Y\left(e^{j \omega}\right)
\end{aligned}
$$

## Problem 2 (DFS)

(a) The periods of both sequences are 6 . The computation is as follows

$$
N=k \frac{2 \pi}{\omega}=6 k=6
$$

By definition, we have:

$$
\begin{gathered}
\tilde{x}[n]=1+\cos \left(\frac{2 \pi}{6} n\right)=1+0.5 e^{j \frac{2 \pi}{6} n}+0.5 e^{-j \frac{2 \pi}{6} n} \\
\tilde{X}[k]= \begin{cases}6 & k=0 \\
3 & k=1,5 \\
0 & \text { otherwise }\end{cases} \\
\tilde{y}[n]=\sin \left(\frac{2 \pi}{6} n+\frac{\pi}{4}\right)=\frac{1}{2 j} e^{j \frac{\pi}{4}} e^{j \frac{2 \pi}{6} n}-\frac{1}{2 j} e^{-j \frac{\pi}{4}} e^{-j \frac{2 \pi}{6} n} \\
\tilde{Y}[k]= \begin{cases}-3 j e^{j \frac{\pi}{4}} & k=1 \\
3 j e^{-j \frac{\pi}{4}} & k=5 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

(b)

$$
\begin{aligned}
\tilde{W}[k] & =\sum_{n=0}^{N-1} \tilde{w}[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\sum_{n=0}^{N-1} \tilde{u}[n] \tilde{v}[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{l=0}^{N-1} \tilde{v}[n] \tilde{U}[l] e^{j \frac{2 \pi}{N} l n} e^{-j \frac{2 \pi}{N} k n} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} \tilde{U}[l] \sum_{n=0}^{N-1} \tilde{v}[n] e^{-j \frac{2 \pi}{N}(k-l) n} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} \tilde{U}[l] \tilde{V}[k-l]
\end{aligned}
$$

(c)

$$
\begin{aligned}
\tilde{R}[k] & =\sum_{n=0}^{N-1} \tilde{r}[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\sum_{n=0}^{N-1} \tilde{W}[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{l=0}^{N-1} \tilde{U}[l] \tilde{V}[n-l] e^{-j \frac{2 \pi}{N} k(n-l+l)} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} \tilde{U}[l] e^{-j \frac{2 \pi}{N} k l} \sum_{n=0}^{N-1} \tilde{V}[n-l] e^{-j \frac{2 \pi}{N} k(n-l)} \\
& =N \tilde{v}[-k] \tilde{u}[-k]
\end{aligned}
$$

(d) In this part we can compute the DFS either using the expression derived in part (b) or directly. Note that

$$
\begin{gathered}
2 \sin (a) \cos (b)=\sin (a+b)+\sin (a-b) \\
\tilde{z}[n]=\sin \left(\frac{2 \pi}{6} n+\frac{\pi}{4}\right)+\sin \left(\frac{2 \pi}{6} n+\frac{\pi}{4}\right) \cos \left(\frac{2 \pi}{6} n\right) \\
\tilde{z}[n]=\sin \left(\frac{2 \pi}{6} n+\frac{\pi}{4}\right)+0.5 \sin \left(\frac{4 \pi}{6} n+\frac{\pi}{4}\right)+0.5 \sin \left(\frac{\pi}{4}\right) \\
=\frac{1}{2 j} e^{j \frac{\pi}{4}} e^{j \frac{2 \pi}{6} n}-\frac{1}{2 j} e^{-j \frac{\pi}{4}} e^{-j \frac{2 \pi}{6} n}+0.5 \sin \left(\frac{\pi}{4}\right)+\frac{1}{4 j} e^{j \frac{\pi}{4}} e^{j \frac{2 \pi}{6} 2 n}-\frac{1}{4 j} e^{-j \frac{\pi}{4}} e^{-j \frac{2 \pi}{6} 2 n} \\
\tilde{Z}[k]= \begin{cases}3 \sin \left(\frac{\pi}{4}\right) & k=0 \\
-3 j e^{j \frac{\pi}{4}} & k=1 \\
-1.5 j e^{j \frac{\pi}{4}} & k=2 \\
0 & k=3 \\
1.5 j e^{-j \frac{\pi}{4}} & k=4 \\
3 j e^{-j \frac{\pi}{4}} & k=5\end{cases}
\end{gathered}
$$

## Problem 3

(a) 1. This statement is wrong. It is not possible to have $X[k]=0$ for all $k=0, \ldots, M-1$ if $M \geq N$. We proof that this cannot be true. The proof works by contradiction. Assume that $X[k]=0$ for all $k=0, \ldots, M-1$ and that $M \geq N$. Also, assume that $x[n]$ is as described in this problem.
Then, because $M \geq N$, we can write

$$
\begin{aligned}
X[k] & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \frac{2 \pi}{M} k n} \\
& =\sum_{n=0}^{M-1} x[n] e^{-j \frac{2 \pi}{M} k n} .
\end{aligned}
$$

This last expression is the discrete Fourier transform (DFT) of the $M$-length sequence $(x[0], x[1], \ldots, x[N-1], 0,0, \ldots, 0)$, where the zeros are added to make the sequencelength to be equal to $M$. Now, since we assume that $X[k]=0$ for $k=0, \ldots, M-1$, and since the DFT is a one-to-one mapping, we conclude that

$$
(x[0], x[1], \ldots, x[N-1], 0,0, \ldots, 0)=(0,0, \ldots, 0)
$$

From this, it follows that $x[n]=0$ for $n=0, \ldots, N-1$. But this is a contradiction with the assumption that $x[n]$ is non-zero. Hence, the statement is wrong.
2. This statement is true. We can construct a sequence $x[n]$ that satisfies the claim as follows. Since we have $M<N$, we will, for simplicity, choose $M=1$. We see that $X[k]$ is a sampled version of the discrete-time Fourier transform (DTFT) of $x[n]$, where the samples are uniformly spaced in $[0,2 \pi]$. If $M=1$, we only take one sample at $\omega=\frac{2 \pi}{M} 0=0$. Hence, all we need is a sequence $x[n]$ of finite length $N$ larger than $M=1$, whose DTFT is such that $X\left(e^{j \omega}\right)=0$ for $\omega=0$. For example, we can choose $X\left(e^{j \omega}\right)=\sin (\omega)$. The sequence $x[n]$ that corresponds to this sequence is

$$
x[n]=\left\{\begin{array}{cc}
\frac{1}{2 j} & \text { if } n=-1 \\
-\frac{1}{2 j} & \text { if } n=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

This sequence has support $N=3$, but it is non-zero for a negative value of $n$. So, we have to slightly modify it by shifting it to the right. The new choice is

$$
x[n]=\left\{\begin{array}{cc}
\frac{1}{2 j} & \text { if } n=0 \\
-\frac{1}{2 j} & \text { if } n=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

The corresponding DTFT is

$$
X\left(e^{j \omega}\right)=e^{-j \omega} \sin (\omega) .
$$

If we sample the above $X\left(e^{j \omega}\right)$ at $\omega=0$, we obtain 0 . Hence, if $M=1$, the sequence $X[k]$ (of length 1 ) is all-zero. However, the sequence $x[n]$ is not all-zero.
(b) $X_{1}[k]$ is simply the DFT of $x[n]$. Let us now analyze $X_{2}[k]$, whereby we study the two cases where $k$ is even and $k$ is odd separately. First, we have

$$
\begin{aligned}
X_{2}[2 k] & =\sum_{n=0}^{M-1} x[n] e^{-j \frac{2 \pi}{2 N} 2 k n} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \\
& =X_{1}[k] .
\end{aligned}
$$

Now,

$$
\begin{aligned}
X_{2}[2 k+1] & =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N}\left(k+\frac{1}{2}\right) n} \\
& =" X_{1}\left[k+\frac{1}{2}\right] ",
\end{aligned}
$$

where we put the last expression in quotes since $X_{1}[k]$ is not actually defined for $k \notin \mathbb{Z}$. As you should recall, such a noninteger shift can be obtained by taking the DFT of the sequence $W_{N}^{n / 2} x[n]$. Another way to interpret this is to remember that the DFT coefficients correspond to samples of the (continuous) DTFT, evaluated at $\omega=(2 \pi / N) k, k \in \mathbb{Z}$. Noninteger shifts of the DFT then can be obtained by sampling the DTFT for noninteger $k$.

Graphically, $X_{2}[k]$ looks like a "smoothed", or interpolated version of $X_{1}[k]$ (cf. also the solutions to Homework 2, Problem 5(b)).

## Problem 4

(a) It is easy to see that $\left\langle\tilde{h}_{i}, \tilde{h}_{j}\right\rangle=0$, for $i \neq j$, i.e., $\tilde{H}$ is orthogonal. For example

$$
\begin{aligned}
\left\langle\tilde{h}_{2}, \tilde{h}_{7}\right\rangle & =\sum_{k=1}^{8} \tilde{h}_{2}(k) \tilde{h}_{7}^{*}(k) \\
& =1 \cdot 1+(-1) \cdot 1+1 \cdot(-1)+(-1) \cdot(-1)+1 \cdot(-1)+(-1) \cdot(-1)+1 \cdot 1+(-1) \cdot 1=0 .
\end{aligned}
$$

However, the norm of the vectors is not 1 :

$$
\| \tilde{\{ } h\}_{i} \|=\left\langle\tilde{h}_{i}, \tilde{h}_{i}\right\rangle^{1 / 2}=\left(\sum_{k=1}^{8} 1\right)^{1 / 2}=\sqrt{8} .
$$

Therefore, in order to make the basis orthonormal, we need to normalize the vectors by their norm. This gives us $H=\left\{h_{1}, \ldots, h_{8}\right\}$, where $h_{i}=\frac{1}{\sqrt{8}} \tilde{h}_{i}$ for $i=1, \ldots, 8$.
(b)

$$
\left.\begin{array}{rl}
\mathbf{a}_{H} & =[2,0,-1,4,-3,1,1,0 \\
& \Downarrow \\
& \Downarrow \\
\mathbf{a}_{E} & =2 h_{1}+0 h_{2}+(-1) h_{3}+4 h_{4}+(-3) h_{5}+1 h_{6}+1 h_{7}+0 h_{8} \\
& =\left[\begin{array}{llllll}
1.4142 & -2.1213 & -1.4142 & 0.7071 & 2.1213 & 0
\end{array} 0.7071\right.
\end{array}\right]
$$

Note that this also can be computed using the matrix multiplication

$$
\begin{aligned}
\mathbf{a}_{H} \cdot \mathbf{H} & =\left[\begin{array}{llllllll}
2 & 0 & -1 & 4 & -3 & 1 & 1 & 0
\end{array}\right] \cdot \frac{1}{\sqrt{8}}\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]_{E} \\
& =\left[\begin{array}{llllll}
1.4142 & -2.1213 & -1.4142 & 0.7071 & 2.1213 & 0 \\
0.7071 & 4.2426
\end{array}\right]
\end{aligned}
$$

(c) Using the same transform as in (b), we can write the measured vector $b_{H}$ in $E$ basis.

$$
\mathbf{b}_{E}=\mathbf{b}_{H} \cdot \mathbf{H}=\left[\begin{array}{llllllll}
2.8284 & -8.4853 & 2.8284 & 2.8284 & -8.4853 & 5.6569 & -2.8284 & 5.6569
\end{array}\right] .
$$

Since the expected measured vectors has zeros in the last two elements, the best estimation is obtained by replacing the corresponding elements by zeros:

$$
\hat{\mathbf{b}}_{E}=\left[\begin{array}{llllllll}
2.8284 & -8.4853 & 2.8284 & 2.8284 & -8.4853 & 5.6569 & 0 & 0
\end{array}\right],
$$

which is

$$
\hat{\mathbf{b}}_{H}=\hat{\mathbf{b}}_{E} \mathbf{H}^{-1}=\left[\begin{array}{llllllll}
-1 & -1 & -5 & -1 & 1 & 9 & -3 & 9
\end{array}\right]
$$

in $H$-basis. Note that $\mathbf{H}=\mathbf{H}^{-1}$, since $H$ forms an orthonormal basis. You can easily check that

$$
\left|\mathbf{b}_{E}-\hat{\mathbf{b}}_{E}\right|=\left|\mathbf{b}_{H}-\hat{\mathbf{b}}_{H}\right|=\sqrt{40}
$$

(d) According to the definition of $\hat{\mathbf{x}}_{1}, \hat{\mathbf{x}}_{2}$, and $\hat{\mathbf{x}}_{3}$ we have

$$
\begin{aligned}
& \hat{\mathbf{x}}_{1}=\left[\begin{array}{llllllll}
5 & 2 & -7 & 8 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned} \begin{aligned}
& \Rightarrow\left|\mathbf{x}-\hat{\mathbf{x}}_{1}\right|^{2}=10^{2}+3^{2}+(-2)^{2}=113 \\
& \hat{\mathbf{x}}_{2}=\left[\begin{array}{llllllll}
5 & 0 & -7 & 8 & 0 & 10 & 3 & 0
\end{array}\right] \\
& \Rightarrow\left|\mathbf{x}-\hat{\mathbf{x}}_{2}\right|^{2}=2^{2}+0^{2}+(-2)^{2}=8 \\
& \hat{\mathbf{x}}_{3}=\left[\begin{array}{llllllll}
5 & 2 & 0 & 8 & 0 & 10 & 3 & 0
\end{array}\right]
\end{aligned} \begin{array}{|l|l} 
& \left.\Rightarrow \hat{\mathbf{x}}_{1}\right|^{2}=(-7)^{2}+0^{2}+(-2)^{2}=53 .
\end{array}
$$

Clearly, $\hat{x}_{2}$ has the smallest reconstruction error.
(e) Assume we want to store only $k$ elements out of $n$ elements of the vector $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$. Let $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ be the element which are stored, and $x_{i_{k+1}}, \ldots, x_{i_{n}}$ be the missing elements. Clearly,

$$
|\mathbf{x}-\hat{\mathbf{x}}|^{2}=\sum_{j=k+1}^{n} x_{i_{j}}^{2} .
$$

In order to minimize this error, one has to choose the $k$ element with the largest absolute value to be stored, and throw away the remaining $n-k$ elements with the smallest absolute value:

$$
\left|x_{i_{1}}\right| \geq\left|x_{i_{2}}\right| \geq \cdots \geq\left|x_{i_{k}}\right| \geq\left|x_{i_{k+1}}\right| \geq \cdots \geq\left|x_{i_{1}}\right| .
$$

