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Solutions: Homework Set # 3

Problem 1 (DTFT)

(a) Compute the DTFT of x[n] = u[n − 2] − u[n − 4].

x[n] = δ[n − 2] + δ[n − 3]

X(ejω) = e−j2w + e−j3w

(b) Compute the DTFT of h[n] =
(

1
2

)−n
u[−n − 1].

H(ejω) =

−1
∑

n=−∞

(

1

2

)−n

ejnω

=
0.5e−jω

1 − 0.5e−jω

(c) Compute the DTFT of y[n] = x[n] ∗ h[n] =
∑

k x[k]h[n − k].

Y (ejω) =
∞
∑

n=−∞

y[n]ejnω

=

∞
∑

n=−∞

∞
∑

k=−∞

x[k]h[n − k]ejnω

=

∞
∑

k=−∞

∞
∑

n=−∞

x[k]h[n − k]ej(n−k+k)ω

=

∞
∑

k=−∞

x[k]ejkω
∞
∑

n=−∞

h[n − k]ej(n−k)ω

= X(ejω)H(ejω)

(d) Compute the DTFT of z[n] = y[n − n0].

Z(ejω) =

∞
∑

n=−∞

z[n]ejnω

=
∞
∑

n=−∞

y[n − n0]e
jnω

=
∞
∑

n=−∞

y[n − n0]e
j(n−n0+n0)ω

= ejn0ω
∞
∑

n=−∞

y[n − n0]e
j(n−n0)ω

= ejn0ωY (ejω)
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Problem 2 (DFS)

(a) The periods of both sequences are 6. The computation is as follows

N = k
2π

ω
= 6k = 6

By definition, we have:

x̃[n] = 1 + cos

(

2π

6
n

)

= 1 + 0.5ej 2π
6

n + 0.5e−j 2π
6

n

X̃ [k] =







6 k = 0
3 k = 1, 5
0 otherwise

ỹ[n] = sin

(

2π

6
n +

π

4

)

=
1

2j
ej π

4 ej 2π
6

n − 1

2j
e−j π

4 e−j 2π
6

n

Ỹ [k] =







−3jej π
4 k = 1

3je−j π
4 k = 5

0 otherwise

(b)

W̃ [k] =
N−1
∑

n=0

w̃[n]e−j 2π
N

kn

=

N−1
∑

n=0

ũ[n]ṽ[n]e−j 2π
N

kn

=
1

N

N−1
∑

n=0

N−1
∑

l=0

ṽ[n]Ũ [l]ej 2π
N

lne−j 2π
N

kn

=
1

N

N−1
∑

l=0

Ũ [l]

N−1
∑

n=0

ṽ[n]e−j 2π
N

(k−l)n

=
1

N

N−1
∑

l=0

Ũ [l]Ṽ [k − l]

(c)

R̃[k] =

N−1
∑

n=0

r̃[n]e−j 2π
N

kn

=
N−1
∑

n=0

W̃ [n]e−j 2π
N

kn

=
1

N

N−1
∑

n=0

N−1
∑

l=0

Ũ [l]Ṽ [n − l]e−j 2π
N

k(n−l+l)

=
1

N

N−1
∑

l=0

Ũ [l]e−j 2π
N

kl
N−1
∑

n=0

Ṽ [n − l]e−j 2π
N

k(n−l)

= Nṽ[−k]ũ[−k]
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(d) In this part we can compute the DFS either using the expression derived in part (b) or
directly. Note that

2 sin(a) cos(b) = sin(a + b) + sin(a − b)

z̃[n] = sin

(

2π

6
n +

π

4

)

+ sin

(

2π

6
n +

π

4

)

cos

(

2π

6
n

)

z̃[n] = sin

(

2π

6
n +

π

4

)

+ 0.5 sin

(

4π

6
n +

π

4

)

+ 0.5 sin
(π

4

)

=
1

2j
ej π

4 ej 2π
6

n − 1

2j
e−j π

4 e−j 2π
6

n + 0.5 sin
(π

4

)

+
1

4j
ej π

4 ej 2π
6

2n − 1

4j
e−j π

4 e−j 2π
6

2n

Z̃[k] =



































3 sin
(

π
4

)

k = 0

−3jej π
4 k = 1

−1.5jej π
4 k = 2

0 k = 3

1.5je−j π
4 k = 4

3je−j π
4 k = 5

Problem 3

(a) 1. This statement is wrong. It is not possible to have X[k] = 0 for all k = 0, . . . ,M − 1
if M ≥ N . We proof that this cannot be true. The proof works by contradiction.
Assume that X[k] = 0 for all k = 0, . . . ,M − 1 and that M ≥ N . Also, assume that
x[n] is as described in this problem.

Then, because M ≥ N , we can write

X[k] =

∞
∑

n=−∞

x[n]e−j 2π
M

kn

=
M−1
∑

n=0

x[n]e−j 2π
M

kn.

This last expression is the discrete Fourier transform (DFT) of the M -length sequence
(

x[0], x[1], . . . , x[N −1], 0, 0, . . . , 0
)

, where the zeros are added to make the sequence-
length to be equal to M . Now, since we assume that X[k] = 0 for k = 0, . . . ,M − 1,
and since the DFT is a one-to-one mapping, we conclude that

(

x[0], x[1], . . . , x[N − 1], 0, 0, . . . , 0
)

=
(

0, 0, . . . , 0
)

.

From this, it follows that x[n] = 0 for n = 0, . . . ,N − 1. But this is a contradiction
with the assumption that x[n] is non-zero. Hence, the statement is wrong.

2. This statement is true. We can construct a sequence x[n] that satisfies the claim
as follows. Since we have M < N , we will, for simplicity, choose M = 1. We see
that X[k] is a sampled version of the discrete-time Fourier transform (DTFT) of x[n],
where the samples are uniformly spaced in [0, 2π]. If M = 1, we only take one sample
at ω = 2π

M 0 = 0. Hence, all we need is a sequence x[n] of finite length N larger than
M = 1, whose DTFT is such that X(ejω) = 0 for ω = 0. For example, we can choose
X(ejω) = sin(ω). The sequence x[n] that corresponds to this sequence is

x[n] =







1
2j if n = −1,

− 1
2j if n = 1,

0 otherwise.
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This sequence has support N = 3, but it is non-zero for a negative value of n. So,
we have to slightly modify it by shifting it to the right. The new choice is

x[n] =







1
2j if n = 0,

− 1
2j if n = 2,

0 otherwise.

The corresponding DTFT is

X(ejω) = e−jω sin(ω).

If we sample the above X(ejω) at ω = 0, we obtain 0. Hence, if M = 1, the sequence
X[k] (of length 1) is all-zero. However, the sequence x[n] is not all-zero.

(b) X1[k] is simply the DFT of x[n]. Let us now analyze X2[k], whereby we study the two
cases where k is even and k is odd separately. First, we have

X2[2k] =

M−1
∑

n=0

x[n]e−j 2π
2N

2kn

=
N−1
∑

n=0

x[n]e−j 2π
N

kn

= X1[k].

Now,

X2[2k + 1] =

N−1
∑

n=0

x[n]e−j 2π
N

(k+ 1

2
)n

= “X1[k + 1
2 ]”,

where we put the last expression in quotes since X1[k] is not actually defined for k /∈ Z. As
you should recall, such a noninteger shift can be obtained by taking the DFT of the sequence

W
n/2
N x[n]. Another way to interpret this is to remember that the DFT coefficients correspond

to samples of the (continuous) DTFT, evaluated at ω = (2π/N)k, k ∈ Z. Noninteger shifts of
the DFT then can be obtained by sampling the DTFT for noninteger k.

Graphically, X2[k] looks like a “smoothed”, or interpolated version of X1[k] (cf. also the
solutions to Homework 2, Problem 5(b)).

Problem 4

(a) It is easy to see that 〈h̃i, h̃j〉 = 0, for i 6= j, i.e., H̃ is orthogonal. For example

〈h̃2, h̃7〉 =

8
∑

k=1

h̃2(k)h̃∗
7(k)

= 1 · 1 + (−1) · 1 + 1 · (−1) + (−1) · (−1) + 1 · (−1) + (−1) · (−1) + 1 · 1 + (−1) · 1 = 0.

However, the norm of the vectors is not 1:

‖ {̃h}i ‖= 〈h̃i, h̃i〉1/2 =

(

8
∑

k=1

1

)1/2

=
√

8.

Therefore, in order to make the basis orthonormal, we need to normalize the vectors by
their norm. This gives us H = {h1, . . . , h8}, where hi = 1√

8
h̃i for i = 1, . . . , 8.
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(b)

aH = [2, 0,−1, 4,−3, 1, 1, 0]

⇓
aE = 2h1 + 0h2 + (−1)h3 + 4h4 + (−3)h5 + 1h6 + 1h7 + 0h8

=
[

1.4142 −2.1213 −1.4142 0.7071 2.1213 0 0.7071 4.2426
]

Note that this also can be computed using the matrix multiplication

aH ·H =
[

2 0 −1 4 −3 1 1 0
]

· 1√
8

























1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

























E

=
[

1.4142 −2.1213 −1.4142 0.7071 2.1213 0 0.7071 4.2426
]

(c) Using the same transform as in (b), we can write the measured vector bH in E basis.

bE = bH ·H =
[

2.8284 −8.4853 2.8284 2.8284 −8.4853 5.6569 −2.8284 5.6569
]

.

Since the expected measured vectors has zeros in the last two elements, the best estimation
is obtained by replacing the corresponding elements by zeros:

b̂E =
[

2.8284 −8.4853 2.8284 2.8284 −8.4853 5.6569 0 0
]

,

which is

b̂H = b̂EH
−1 =

[

−1 −1 −5 −1 1 9 −3 9
]

in H-basis. Note that H = H
−1, since H forms an orthonormal basis. You can easily

check that

|bE − b̂E | = |bH − b̂H | =
√

40.

(d) According to the definition of x̂1, x̂2, and x̂3 we have

x̂1 =
[

5 2 −7 8 0 0 0 0
]

⇒ |x− x̂1|2 = 102 + 32 + (−2)2 = 113

x̂2 =
[

5 0 −7 8 0 10 3 0
]

⇒ |x− x̂2|2 = 22 + 02 + (−2)2 = 8

x̂3 =
[

5 2 0 8 0 10 3 0
]

⇒ |x− x̂1|2 = (−7)2 + 02 + (−2)2 = 53.

Clearly, x̂2 has the smallest reconstruction error.

(e) Assume we want to store only k elements out of n elements of the vector x =
[

x1 x2 . . . xn

]

.
Let xi1 , xi2 , . . . , xik be the element which are stored, and xik+1

, . . . , xin be the missing el-
ements. Clearly,

|x − x̂|2 =

n
∑

j=k+1

x2
ij .

In order to minimize this error, one has to choose the k element with the largest absolute
value to be stored, and throw away the remaining n−k elements with the smallest absolute
value:

|xi1 | ≥ |xi2 | ≥ · · · ≥ |xik | ≥ |xik+1
| ≥ · · · ≥ |xi1 |.
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