Mathematical Prerequisites

Problem 1 (Geometric Series)

(a) We can write

$$
\begin{aligned}
\sum_{k=0}^{n} k r^{k} & =r \sum_{k=0}^{n} \frac{\mathrm{~d}}{\mathrm{~d} r} r^{k} \\
& =r \frac{\mathrm{~d}}{\mathrm{~d} r} \frac{1-r^{n+1}}{1-r}
\end{aligned}
$$

Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1-r^{n+1}}{1-r^{n}}=\frac{-(n+1) r^{n}+n r^{n+1}+1}{(1-r)^{2}} .
$$

Multiplying with r gives the final result:

$$
\sum_{k=0}^{n} k r^{k}=\frac{-(n+1) r^{n+1}+n r^{n+2}+r}{(1-r)^{2}}
$$

(b) Using the general formula for geometric series, we have

$$
\sum_{k=0}^{m} e^{j \frac{2 \pi}{n} k}=\frac{1-e^{j \frac{2 \pi}{n}(m+1)}}{1-e^{j \frac{2 \pi}{n}}}
$$

If $m=\ln -1$, then this is equal to

$$
\frac{1-e^{j 2 \pi l}}{1-e^{j \frac{2 \pi}{n}}}=0 .
$$

(c) We have

$$
\begin{aligned}
\sum_{k=0}^{\infty} t[k] & =\sum_{k=0}^{\infty} \frac{1}{4^{k}}+\sum_{k=0}^{\infty}\left(\frac{1}{3 j}\right)^{k} \\
& =\frac{1}{1-1 / 4}+\frac{1}{1-1 / 3 j} \\
& =\frac{4}{3}+\frac{9-3 j}{10} \\
& =\frac{67}{30}-\frac{3}{10} j
\end{aligned}
$$

(d) We have

$$
\begin{aligned}
\sum_{k=0}^{n-1} e^{j \theta k} & =\frac{1-e^{j \theta n}}{1-e^{j \theta}} \\
& =\frac{e^{j \theta n / 2}\left(e^{-j \theta n / 2}-e^{j \theta n / 2}\right)}{e^{j \theta / 2}\left(e^{-j \theta / 2}-e^{j \theta / 2}\right)} \\
& =e^{j \theta(n-1) / 2} \frac{\sin (\theta n / 2)}{\sin (\theta / 2)}
\end{aligned}
$$

Taking the norm gives

$$
\left|\frac{\sin (\theta n / 2)}{\sin (\theta / 2)}\right|
$$

Problem 2 (Complex Numbers)

(a) $\left|e^{z}\right|=\left|e^{x+j y}\right|=\left|e^{x} e^{j y}\right|=\left|e^{x}\right|\left|e^{j y}\right|=\left|e^{x}\right|=e^{x}$.
(b) Using $\sin z=\left(e^{j z}-e^{-j z}\right) / 2 j$ and $\cos z=\left(e^{j z}+e^{-j z}\right) / 2$, we get

$$
\begin{aligned}
\sin z & =\frac{e^{j x} e^{-y}-e^{-j x} e^{y}}{2 j} \\
& =\frac{e^{j(x-\pi / 2)} e^{-y}-e^{-j(x+\pi / 2)} e^{y}}{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
\Re \sin z & =\frac{1}{2}\left[e^{-y} \cos (x-\pi / 2)-e^{y} \cos (x+\pi / 2)\right] \\
& =\frac{1}{2}\left(e^{-y} \sin x+e^{y} \sin x\right) \\
& =\sin x \cosh y,
\end{aligned}
$$

and

$$
\begin{aligned}
\Im \sin z & =\frac{1}{2}\left[e^{-y} \sin (x-\pi / 2)+e^{y} \sin (x+\pi / 2)\right] \\
& =\frac{1}{2}\left(-e^{-y} \cos x+e^{y} \cos x\right) \\
& =\cos x \sinh y .
\end{aligned}
$$

Similarly, we get $\Re \cos z=\cos x \cosh y$ and $\Im \cos z=-\sin x \sinh y$.
(c) We want to find a and b such that $e^{a+j b}=z$. First, we have $e^{a}=|z|$, so $a=\log |z|$. Next, note that $\arg e^{j b}=\arg z$ for all b such that $b=\arg z+2 \pi k, k \in \mathbb{Z}$. Thus, $\log z=$ $\log |z|+j(\arg z+2 \pi k), k \in \mathbb{Z}$. (Properly speaking, $\log z$ is not a function, but the reverse image of the complex exponential.)

Problem 3 (Linear Algebra)

(a) It is easiest to start with the column with the most zeroes. Then

$$
|\mathbf{A}|=(-1)^{3+2} \cdot 2\left|\begin{array}{rrr}
3 & -2 & 1 \\
1 & 1 & 2 \\
-1 & 2 & 0
\end{array}\right|+(-1)^{4+2}(-3)\left|\begin{array}{rrr}
3 & -2 & 1 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{array}\right|,
$$

where

$$
\begin{aligned}
\left|\begin{array}{rrr}
3 & -2 & 1 \\
1 & 1 & 2 \\
-1 & 2 & 0
\end{array}\right| & =(-1)^{3+1}\left|\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right|+(-1)^{3+2} \cdot 2\left|\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right| \\
& =3-2 \cdot 4=-5
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\begin{array}{rrr}
3 & -2 & 1 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{array}\right| & =(-1)^{3+3}\left|\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right| \\
& =5,
\end{aligned}
$$

so

$$
\begin{aligned}
|\mathbf{A}| & =(-2) \cdot(-5)-3 \cdot 5 \\
& =10-15=-5 .
\end{aligned}
$$

(b) Setting $\lambda=0$ yields $\operatorname{det} \mathbf{A}=\lambda_{1} \cdots \lambda_{n}$.
(c) Expanding the term $\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$, one sees that the coefficient of $(-\lambda)^{n-1}$ is $\lambda_{1}+\cdots+\lambda_{n}$. Now consider the equation for the determinant of a matrix \mathbf{B},

$$
\operatorname{det}(\mathbf{B})=\sum_{j=1}^{n} B_{i, j}(-1)^{i+j} \operatorname{det}\left(\mathbf{B}^{\backslash(i, j)}\right),
$$

for some $i=1, \ldots, n$. For any term of this sum where $i \neq j$ (i.e., involving a non-diagonal element of $\mathbf{B}), \mathbf{B} \backslash(i, j)$ will miss exactly two diagonal elements of the original matrix \mathbf{B}. Applied to the matrix $\mathbf{B}=\mathbf{A}-\lambda \mathbf{I}$, this means that any term involving a non-diagonal element can contain λ at most with power $n-2$. Therefore, the only term involving $(-\lambda)^{n-1}$ in $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$ comes from the diagonal product $\left(a_{11}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)$, in which the coefficient of $(-\lambda)^{n-1}$ is $a_{11}+\cdots+a_{n n}$. Since the coefficient of $(-\lambda)^{n-1}$ is unique, we get the desired result.

Introduction to MATLAB

Problem 4 (MATLAB)

Nothing to hand in for this problem.

Problem 5 (Operators)

Suppose we have a matrix A given by

$$
\left[\begin{array}{ll}
a+i b & c+i d \tag{1}\\
e+i f & g+i h
\end{array}\right] \text {. }
$$

What will be the MATLAB output of the following commands: i) A' ii) A.', iii) fliplr(A), iv) $\operatorname{sum}(A), v) \operatorname{sum}(A, 2)$, vi) A*A, vii) A.*A. Hint: Have a look in the documentation for arithmetic operations.
$\mathrm{C}=\mathrm{A} * \mathrm{~B}$ is the linear algebraic product of the matrices A and B.
A. $* \mathrm{~B}$ is the element-by-element product of the arrays A and $B . A$ and B must have the same size, unless one of them is a scalar.
A^{\prime} is the linear algebraic transpose of A. For complex matrices, this is the complex conjugate transpose.
A.' is the array transpose of A. For complex matrices, this does not involve conjugation.

Sum returns sums along different dimensions of an array.
$\operatorname{Sum}(A, b)$ sums along the dimension of A specified by scalar dim.
$B=f l i p l r(A)$ returns A with columns flipped in the left-right direction, that is, about a vertical axis. (Similarly, flipud flips its argument in the up-down direction.)

Problem 6

The n-th coefficient of $c(x)$ is given by

$$
c_{n}=\sum_{k=0}^{\max (N-1, M-1)} a_{k} b_{n-k} .
$$

This corresponds exactly to the convolution of the two sequences \mathbf{a} and \mathbf{b}, so the right MATLAB command is

```
>> c = conv(a, b)
```


Problem 7 (Sequences)

(a) $\mathrm{n}=1: 45$;
$\mathrm{a}=\sin (2 * \mathrm{pi} * \mathrm{n} / 15)$;
stem(n,a);
The output is shown on Figure 1.

Figure 1: Plot output of Problem 7
(b) $\mathrm{b}=\mathrm{a}(1: 5:$ end $)$
stem(b);
(c) function output=cshiftright (a, N) size_a=length(a); output=[a(N:end) a(1:size_a-N)];
(d) $c=c$ shiftright $(a, 8)$ stem(c)

Problem 8 (Audio)

(b) >> stem(data(1:100));
(c) len $=$ length(data);
soundsc(data(len:-1:1,fs));
stem(data(100:-1:1);
(d) $\mathrm{n}=1: 10 \mathrm{e} 3$;
$\mathrm{a}=\sin (440 . * \mathrm{n} . / 2 \mathrm{e} 3)$;
$\mathrm{c}=\sin (523.25$.* n ./ 2e3);
$\mathrm{e}=\sin (659.26 . * \mathrm{n} . / 2 \mathrm{e} 3)$;
soundsc (a,2e3)
soundsc(a+e,2e3)

Figure 2: Problem 8 - Part (b)

Figure 3: Problem 8 - Part (c)

Figure 4: Problem 8 - Part (f)

```
soundsc(a+e+c,2e3)
d=a+e+c;
b=a+e;
stem(d(1:300))
soundsc(a(10e3:-1:1),2e3)
soundsc(b(10e3:-1:1),2e3)
soundsc(d(10e3:-1:1),2e3)
```


Problem 9 (Images)

(a) A=imread('lena.jpg'); colormap(gray(256)); imagesc(A)
(b) $\mathrm{B}=\mathrm{diag}(\mathrm{A})$; stem (B)
(c) soundsc $(\mathrm{A}(1: 256 * 256))$;
(d) $[a, f s]=$ wavread('handel.wav');

Figure 5: Problem 9 - Part (a)

Figure 6: Problem 9 - Part (b)

Figure 7: Problem 8 - Part 4

```
pic=abs(reshape(data(1:4096),64,64))';
pic=pic./max(max(pic)).*256;
imagesc(pic)
colormap(gray(256));
```

