Solutions to Evaluation Test

Problem 1 (Complex numbers)

(a) The polar representation of a complex number $z=x+j y$ is given by the following equations:

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}} \\
\varphi & =\arctan \left(\frac{y}{x}\right)
\end{aligned}
$$

Therefore we have:

$$
\begin{aligned}
& z=\rho e^{j \varphi} \\
& z=\sqrt{61} e^{j \arctan \left(\frac{5}{-6}\right)}
\end{aligned}
$$

(b) We know that ω can be written as:

$$
\begin{aligned}
\omega & =\rho(\cos (\varphi)+j \sin (\varphi)) \\
& =\frac{3}{4}\left(\cos \left(-\frac{\pi}{4}\right)+j \sin \left(-\frac{\pi}{4}\right)\right) \\
& =\frac{3}{4}\left(\cos \left(-\frac{\pi}{4}\right)-j \sin \left(\frac{\pi}{4}\right)\right) \\
& =\frac{3}{4}\left(\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}\right) \\
& =\frac{3}{4 \sqrt{2}}+j \frac{-3}{4 \sqrt{2}}
\end{aligned}
$$

(c) We can see that

$$
z^{*}=\rho e^{-j \varphi}
$$

Therefore:

$$
\begin{aligned}
\left|\frac{z}{z^{*}}\right| & =\left|\frac{\rho e^{j \varphi}}{\rho e^{-j \varphi}}\right| \\
& =\left|\frac{e^{j \varphi}}{e^{-j \varphi}}\right| \\
& =\left|e^{j 2 \varphi}\right| \\
& =1
\end{aligned}
$$

(d) Take

$$
x+i y=\sqrt{-1+j \sqrt{3}}
$$

Squaring on both side we get

$$
\left(x^{2}-y^{2}\right)+j 2 x y=-1+j \sqrt{3}
$$

We therefore have the following set of equations:

$$
\begin{aligned}
x^{2}-y^{2} & =-1 \\
2 x y & =\sqrt{3} \\
\Longrightarrow y & =\frac{\sqrt{3}}{2 x} \\
\Longrightarrow y^{2} & =\frac{3}{4 x^{2}}
\end{aligned}
$$

We replace this in the first equation:

$$
\begin{aligned}
x^{2}-\frac{3}{4 x^{2}} & =-1 \\
\Longrightarrow 4 x^{4}-3 & =-4 x^{2} \\
\Longrightarrow 4 x^{4}+4 x^{2}-3 & =0
\end{aligned}
$$

This can be written as:

$$
\left(2 x^{2}+3\right)\left(2 x^{2}-1\right)=0
$$

We can solve this to get the following values for x^{2} :

$$
\begin{aligned}
x^{2} & =\frac{-3}{2} \\
\Longrightarrow x & = \pm j \sqrt{\frac{3}{2}}
\end{aligned}
$$

Or,

$$
\begin{aligned}
x^{2} & =\frac{1}{2} \\
\Longrightarrow x & = \pm \sqrt{\frac{1}{2}}
\end{aligned}
$$

Now, if $x= \pm j \sqrt{\frac{3}{2}}$

$$
\begin{aligned}
y & = \pm j \frac{\sqrt{3}}{2 \sqrt{\frac{3}{2}}} \\
\Longrightarrow y & = \pm j \sqrt{\frac{1}{2}} \\
\Longrightarrow x+j y & = \pm\left(\sqrt{\frac{1}{2}}+j \sqrt{\frac{3}{2}}\right)
\end{aligned}
$$

Now, if $x= \pm \sqrt{\frac{1}{2}}$

$$
\begin{aligned}
y & = \pm \frac{\sqrt{3}}{2 \sqrt{\frac{1}{2}}} \\
\Longrightarrow y & = \pm \sqrt{\frac{3}{2}} \\
\Longrightarrow x+j y & = \pm\left(\sqrt{\frac{1}{2}}+j \sqrt{\frac{3}{2}}\right)
\end{aligned}
$$

We therefore realize that the solution to our initial equation is

$$
\sqrt{-1+j \sqrt{3}}= \pm\left(\sqrt{\frac{1}{2}}+j \sqrt{\frac{3}{2}}\right)
$$

(e)
(f) We can write j as:

$$
\begin{aligned}
j & =e^{j \frac{\pi}{2}} \\
\Longrightarrow \ln (j) & =\ln \left(e^{j \frac{\pi}{2}}\right) \\
& =j \frac{\pi}{2} \\
\Longrightarrow \ln (j) & =j \frac{\pi}{2}
\end{aligned}
$$

Problem 2 (Polynomials)

(a) We can write $x^{3}+64$ as:

$$
\left(x^{3}+64\right)=(x+4)\left(x^{2}-4 x+16\right)
$$

Solving the binomial equation we get:

$$
x=2 \pm j 2 \sqrt{3}
$$

Therefore the solutions are:

$$
\begin{aligned}
& x=-4 \\
& x=2+j 2 \sqrt{3} \\
& x=2-j 2 \sqrt{3}
\end{aligned}
$$

(b) Let us first substitute x^{3} by y. We have:

$$
\begin{aligned}
y^{2}-3 y-4 & =0 \\
\Longrightarrow(y-4)(y+1) & =0 \\
\Longrightarrow y & =4,-1 \\
\Longrightarrow x^{3} & =4,-1
\end{aligned}
$$

We now solve $x^{3}=4$:

$$
\begin{aligned}
x^{3} & =4 e^{j 2 \pi k}(k=0,1,2) \\
\Longrightarrow x & =4^{\frac{1}{3}} e^{\frac{j 2 \pi k}{3}}(k=0,1,2
\end{aligned}
$$

We solve the other equation:

$$
\begin{aligned}
x^{3} & =e^{j \pi(2 k+1)}(k=0,1,2) \\
\Longrightarrow x & =e^{\frac{j \pi(2 k+1)}{3}}(k=0,1,2)
\end{aligned}
$$

Problem 3 (Series)

(a) $e^{j \frac{\pi}{3}}$ does not depend on k, hence:

$$
\sum_{k=0}^{8} e^{j \frac{\pi}{3}}=9 e^{j \frac{\pi}{3}}
$$

(b) We have

$$
\begin{aligned}
& \sum_{k=-2}^{+\infty} \frac{52^{k+3}}{(-3)^{k}} \\
= & 52^{3}\left(\frac{52^{-2}}{(-3)^{2}}+\frac{52^{-1}}{(-3)^{-1}}+\sum_{k=0}^{\infty} \frac{52^{k+3}}{(-3)^{k}}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
&\left|\frac{52}{-3}\right|>1 \\
& \Longrightarrow \sum_{k=0}^{+\infty} \frac{52^{k+3}}{(-3)^{k}}
\end{aligned}
$$

does not converge. This means that the sum that we are trying to calculate does not converge.
(c) We have the following:

$$
\begin{aligned}
& \sum_{k=0}^{+\infty} \frac{1}{3+7 n} \\
& \geq \sum_{k=0}^{+\infty} \frac{1}{7+7 n} \\
& =\sum_{k=0}^{+\infty} \frac{1}{7} \frac{1}{1+n} \\
& =\frac{1}{7} \sum_{k=1}^{+\infty} \frac{1}{n} \\
& =\infty^{+\infty} \\
\Longrightarrow \sum_{k=0}^{+\infty} \frac{1}{3+7 n} & =+\infty
\end{aligned}
$$

(d) Use the following formulae:

$$
\begin{aligned}
\sum_{k=0}^{n} k^{2} & =\frac{n(n+1)(2 n+1)}{6} \\
\sum_{k=0}^{n} k & =\frac{n(n+1)}{2}
\end{aligned}
$$

and we get:

$$
\sum_{k=0}^{n}\left(k^{2}-k\right)=\frac{n(n-1)(n+1)}{3}
$$

(e) We remark that:

$$
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
$$

Therefore:

$$
\begin{aligned}
\sum_{n=1}^{N} \frac{1}{n(n+1)} & =\sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{N+1}
\end{aligned}
$$

(f) The idea is to split it into two sums:

$$
\begin{aligned}
& \sum_{m=0}^{+\infty} \frac{m+1}{m!} \\
= & \sum_{m=0}^{+\infty} \frac{m}{m!}+\sum_{m=0}^{+\infty} \frac{1}{m!} \\
= & \sum_{m=1}^{+\infty} \frac{m}{m!}+\sum_{m=0}^{+\infty} \frac{1}{m!} \\
= & \sum_{m=1}^{+\infty} \frac{1}{(m-1)!}+\sum_{m=0}^{+\infty} \frac{1}{m!} \\
= & \sum_{l=0}^{+\infty} \frac{1}{l!}+\sum_{m=0}^{+\infty} \frac{1}{m!} \\
= & e^{1}+e^{1} \\
= & 2 e
\end{aligned}
$$

Problem 4 (Linear algebra)

(a) We can calculate $B^{*} B+C$ as:

- B^{*} being the conjugate transpose of B, it is of size $3 X 2$. This means that $B^{*} B$ can be performed and it results in a $3 X 3$ matrix.
- Both $B^{*} B$ and C are $3 X 3$ matrices and hence the addition is possible.
(b) To multiply two matrices F and G , if F is a $m X n$ matrix, then G has to be a $n X p$ matrix for some positive integers m, n and p. Here this is clearly not the case.
(c) $\left|D D^{T}\right|$ is well defined.
(d) $D D^{*}$ is a $2 X 2$ matrix whereas B is a $2 X 3$ matrix, hence addition is not possible.
(e) I is a $2 X 2$ matrix whereas C is a $3 X 3$ matrix, hence this is not possible.

Problem 5 (Integrals)

(a) The idea is to use the following formula and replace in the integral:

$$
\cos (a t)=\frac{e^{j a t}+e^{-j a t}}{2}
$$

Therefore the integral becomes:

$$
\begin{aligned}
\int_{0}^{2 \pi} \cos \left(\frac{t}{2}\right) e^{j \frac{t}{3}} d t & =\int_{0}^{2 \pi}\left(\left(\frac{e^{j a t}+e^{-j a t}}{2}\right) e^{j \frac{t}{3}}\right) d t \\
& =\frac{1}{2}\left\{\int_{0}^{2 \pi} e^{j \frac{t}{2}} e^{j \frac{t}{3}} d t+\int_{0}^{2 \pi} e^{j \frac{-t}{2}} e^{j \frac{t}{3}} d t\right\} \\
& =\frac{1}{2}\left\{\int_{0}^{2 \pi} e^{j \frac{5 t}{6}} d t+\int_{0}^{2 \pi} e^{j \frac{-t}{6}} d t\right\} \\
& =\frac{1}{2}\left\{\frac{-6 j}{5}\left(e^{j \frac{5 \pi}{3}}-1\right)+6 j\left(e^{-j \frac{\pi}{3}}-1\right)\right\} \\
& =\frac{1}{2}\left\{\frac{6 j}{5}\left(e^{j \frac{\pi}{3}}+1\right)+6 j\left(e^{-j \frac{\pi}{3}}-1\right)\right\} \\
& =\cdots
\end{aligned}
$$

(b) Using the hint we have:

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \sin \left(\log _{4}\left(t^{\pi}\right)\right) \delta(t-2) d t & =\sin \left(\log _{4}\left(2^{\pi}\right)\right) \\
& =\sin \left(\log _{4}\left(4^{\frac{\pi}{2}}\right)\right) \\
& =\sin \left(\frac{\pi}{2}\right) \\
& =1
\end{aligned}
$$

